Limit trees for free group automorphisms: universality
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

To any free group automorphism, we associate a universal (cone of) limit tree(s) with three defining properties: first, the tree has a minimal isometric action of the free group with trivial arc stabilizers; second, there is a unique expanding dilation of the tree that represents the free group automorphism; and finally, the loxodromic elements are exactly the elements that weakly limit to dominating attracting laminations under forward iteration by the automorphism. So the action on the tree detects the automorphism’s dominating exponential dynamics.As a corollary, our previously constructed limit pretree that detects the exponential dynamics is canonical. We also characterize all very small trees that admit an expanding homothety representing a given automorphism. In the appendix, we prove a variation of Feighn–Handel’s recognition theorem for atoroidal outer automorphisms.
@article{10_1017_fms_2024_122,
     author = {Jean Pierre Mutanguha},
     title = {Limit trees for free group automorphisms: universality},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.122/}
}
TY  - JOUR
AU  - Jean Pierre Mutanguha
TI  - Limit trees for free group automorphisms: universality
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.122/
DO  - 10.1017/fms.2024.122
LA  - en
ID  - 10_1017_fms_2024_122
ER  - 
%0 Journal Article
%A Jean Pierre Mutanguha
%T Limit trees for free group automorphisms: universality
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.122/
%R 10.1017/fms.2024.122
%G en
%F 10_1017_fms_2024_122
Jean Pierre Mutanguha. Limit trees for free group automorphisms: universality. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.122

Cité par Sources :