Polynomial progressions in topological fields
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$ be polynomials with distinct degrees, no constant terms and coefficients in a general local field $\mathbb {K}$. We give a quantitative count of the number of polynomial progressions $x, x+P_1(y), \ldots , x + P_m(y)$ lying in a set $S\subseteq \mathbb {K}$ of positive density. The proof relies on a general $L^{\infty }$ inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex and p-adic analysis.
@article{10_1017_fms_2024_104,
author = {Ben Krause and Mariusz Mirek and Sarah Peluse and James Wright},
title = {Polynomial progressions in topological fields},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.104/}
}
TY - JOUR AU - Ben Krause AU - Mariusz Mirek AU - Sarah Peluse AU - James Wright TI - Polynomial progressions in topological fields JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.104/ DO - 10.1017/fms.2024.104 LA - en ID - 10_1017_fms_2024_104 ER -
%0 Journal Article %A Ben Krause %A Mariusz Mirek %A Sarah Peluse %A James Wright %T Polynomial progressions in topological fields %J Forum of Mathematics, Sigma %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.104/ %R 10.1017/fms.2024.104 %G en %F 10_1017_fms_2024_104
Ben Krause; Mariusz Mirek; Sarah Peluse; James Wright. Polynomial progressions in topological fields. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.104
Cité par Sources :