Polynomial progressions in topological fields
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$ be polynomials with distinct degrees, no constant terms and coefficients in a general local field $\mathbb {K}$. We give a quantitative count of the number of polynomial progressions $x, x+P_1(y), \ldots , x + P_m(y)$ lying in a set $S\subseteq \mathbb {K}$ of positive density. The proof relies on a general $L^{\infty }$ inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex and p-adic analysis.
@article{10_1017_fms_2024_104,
     author = {Ben Krause and Mariusz Mirek and Sarah Peluse and James Wright},
     title = {Polynomial progressions in topological fields},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.104/}
}
TY  - JOUR
AU  - Ben Krause
AU  - Mariusz Mirek
AU  - Sarah Peluse
AU  - James Wright
TI  - Polynomial progressions in topological fields
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.104/
DO  - 10.1017/fms.2024.104
LA  - en
ID  - 10_1017_fms_2024_104
ER  - 
%0 Journal Article
%A Ben Krause
%A Mariusz Mirek
%A Sarah Peluse
%A James Wright
%T Polynomial progressions in topological fields
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.104/
%R 10.1017/fms.2024.104
%G en
%F 10_1017_fms_2024_104
Ben Krause; Mariusz Mirek; Sarah Peluse; James Wright. Polynomial progressions in topological fields. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.104

Cité par Sources :