The spin Brauer category
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce a diagrammatic monoidal category, the spin Brauer category, that plays the same role for the spin and pin groups as the Brauer category does for the orthogonal groups. In particular, there is a full functor from the spin Brauer category to the category of finite-dimensional modules for the spin and pin groups. This functor becomes essentially surjective after passing to the Karoubi envelope, and its kernel is the tensor ideal of negligible morphisms. In this way, the spin Brauer category can be thought of as an interpolating category for the spin and pin groups. We also define an affine version of the spin Brauer category, which acts on categories of modules for the pin and spin groups via translation functors.
@article{10_1017_fms_2024_102,
     author = {Peter J. McNamara and Alistair Savage},
     title = {The spin {Brauer} category},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.102/}
}
TY  - JOUR
AU  - Peter J. McNamara
AU  - Alistair Savage
TI  - The spin Brauer category
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.102/
DO  - 10.1017/fms.2024.102
LA  - en
ID  - 10_1017_fms_2024_102
ER  - 
%0 Journal Article
%A Peter J. McNamara
%A Alistair Savage
%T The spin Brauer category
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.102/
%R 10.1017/fms.2024.102
%G en
%F 10_1017_fms_2024_102
Peter J. McNamara; Alistair Savage. The spin Brauer category. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.102

Cité par Sources :