The maximal size of a minimal generating set
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

A generating set for a finite group G is minimal if no proper subset generates G, and $m(G)$ denotes the maximal size of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there exist $a,b> 0$ such that any finite group G satisfies $m(G) \leqslant a \cdot \delta (G)^b$, for $\delta (G) = \sum _{p \text { prime}} m(G_p)$, where $G_p$ is a Sylow p-subgroup of G. To do this, we first bound $m(G)$ for all almost simple groups of Lie type (until now, no nontrivial bounds were known except for groups of rank $1$ or $2$). In particular, we prove that there exist $a,b> 0$ such that any finite simple group G of Lie type of rank r over the field $\mathbb {F}_{p^f}$ satisfies $r + \omega (f) \leqslant m(G) \leqslant a(r + \omega (f))^b$, where $\omega (f)$ denotes the number of distinct prime divisors of f. In the process, we confirm a conjecture of Gill and Liebeck that there exist $a,b> 0$ such that a minimal base for a faithful primitive action of an almost simple group of Lie type of rank r over $\mathbb {F}_{p^f}$ has size at most $ar^b + \omega (f)$.
@article{10_1017_fms_2023_71,
     author = {Scott Harper},
     title = {The maximal size of a minimal generating set},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.71/}
}
TY  - JOUR
AU  - Scott Harper
TI  - The maximal size of a minimal generating set
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.71/
DO  - 10.1017/fms.2023.71
LA  - en
ID  - 10_1017_fms_2023_71
ER  - 
%0 Journal Article
%A Scott Harper
%T The maximal size of a minimal generating set
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.71/
%R 10.1017/fms.2023.71
%G en
%F 10_1017_fms_2023_71
Scott Harper. The maximal size of a minimal generating set. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.71

Cité par Sources :