Quantum systems at the brink: existence of bound states, critical potentials, and dimensionality
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
One of the crucial properties of a quantum system is the existence of bound states. While the existence of eigenvalues below zero, that is, below the essential spectrum, is well understood, the situation of zero energy bound states at the edge of the essential spectrum is far less understood. We present complementary sharp criteria for the existence and nonexistence of zero energy ground states. Our criteria give a straightforward explanation for the folklore that there is a spectral phase transition with critical dimension four, concerning the existence versus nonexistence of zero energy ground states.
@article{10_1017_fms_2023_39,
author = {Dirk Hundertmark and Michal Jex and Markus Lange},
title = {Quantum systems at the brink: existence of bound states, critical potentials, and dimensionality},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.39},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.39/}
}
TY - JOUR AU - Dirk Hundertmark AU - Michal Jex AU - Markus Lange TI - Quantum systems at the brink: existence of bound states, critical potentials, and dimensionality JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.39/ DO - 10.1017/fms.2023.39 LA - en ID - 10_1017_fms_2023_39 ER -
%0 Journal Article %A Dirk Hundertmark %A Michal Jex %A Markus Lange %T Quantum systems at the brink: existence of bound states, critical potentials, and dimensionality %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.39/ %R 10.1017/fms.2023.39 %G en %F 10_1017_fms_2023_39
Dirk Hundertmark; Michal Jex; Markus Lange. Quantum systems at the brink: existence of bound states, critical potentials, and dimensionality. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.39
Cité par Sources :