Tropical Fock–Goncharov coordinates for $\mathrm {SL}_3$-webs on surfaces I: construction
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
For a finite-type surface $\mathfrak {S}$, we study a preferred basis for the commutative algebra $\mathbb {C}[\mathscr {R}_{\mathrm {SL}_3(\mathbb {C})}(\mathfrak {S})]$ of regular functions on the $\mathrm {SL}_3(\mathbb {C})$-character variety, introduced by Sikora–Westbury. These basis elements come from the trace functions associated to certain trivalent graphs embedded in the surface $\mathfrak {S}$. We show that this basis can be naturally indexed by nonnegative integer coordinates, defined by Knutson–Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock and Goncharov, to the tropical points at infinity of the dual version of the character variety.
@article{10_1017_fms_2023_120,
author = {Daniel C. Douglas and Zhe Sun},
title = {Tropical {Fock{\textendash}Goncharov} coordinates for $\mathrm {SL}_3$-webs on surfaces {I:} construction},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2023.120},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.120/}
}
TY - JOUR
AU - Daniel C. Douglas
AU - Zhe Sun
TI - Tropical Fock–Goncharov coordinates for $\mathrm {SL}_3$-webs on surfaces I: construction
JO - Forum of Mathematics, Sigma
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.120/
DO - 10.1017/fms.2023.120
LA - en
ID - 10_1017_fms_2023_120
ER -
%0 Journal Article
%A Daniel C. Douglas
%A Zhe Sun
%T Tropical Fock–Goncharov coordinates for $\mathrm {SL}_3$-webs on surfaces I: construction
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.120/
%R 10.1017/fms.2023.120
%G en
%F 10_1017_fms_2023_120
Daniel C. Douglas; Zhe Sun. Tropical Fock–Goncharov coordinates for $\mathrm {SL}_3$-webs on surfaces I: construction. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.120
Cité par Sources :