The stable cohomology of self-equivalences of connected sums of products of spheres
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We identify the cohomology of the stable classifying space of homotopy automorphisms (relative to an embedded disk) of connected sums of ${\mathrm {S}^{k}} \times {\mathrm {S}^{l}}$, where $3 \le k l \le 2k - 2$. The result is expressed in terms of Lie graph complex homology.
@article{10_1017_fms_2023_113,
author = {Robin Stoll},
title = {The stable cohomology of self-equivalences of connected sums of products of spheres},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2023.113},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.113/}
}
TY - JOUR AU - Robin Stoll TI - The stable cohomology of self-equivalences of connected sums of products of spheres JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.113/ DO - 10.1017/fms.2023.113 LA - en ID - 10_1017_fms_2023_113 ER -
Robin Stoll. The stable cohomology of self-equivalences of connected sums of products of spheres. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.113
Cité par Sources :