The stable cohomology of self-equivalences of connected sums of products of spheres
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We identify the cohomology of the stable classifying space of homotopy automorphisms (relative to an embedded disk) of connected sums of ${\mathrm {S}^{k}} \times {\mathrm {S}^{l}}$, where $3 \le k l \le 2k - 2$. The result is expressed in terms of Lie graph complex homology.
@article{10_1017_fms_2023_113,
     author = {Robin Stoll},
     title = {The stable cohomology of self-equivalences of connected sums of products of spheres},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2023.113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.113/}
}
TY  - JOUR
AU  - Robin Stoll
TI  - The stable cohomology of self-equivalences of connected sums of products of spheres
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.113/
DO  - 10.1017/fms.2023.113
LA  - en
ID  - 10_1017_fms_2023_113
ER  - 
%0 Journal Article
%A Robin Stoll
%T The stable cohomology of self-equivalences of connected sums of products of spheres
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.113/
%R 10.1017/fms.2023.113
%G en
%F 10_1017_fms_2023_113
Robin Stoll. The stable cohomology of self-equivalences of connected sums of products of spheres. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.113

Cité par Sources :