ALTERNATING AND SYMMETRIC GROUPS WITH EULERIAN GENERATING GRAPH
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
Given a finite group $G$ , the generating graph $\unicode[STIX]{x1D6E4}(G)$ of $G$ has as vertices the (nontrivial) elements of $G$ and two vertices are adjacent if and only if they are distinct and generate $G$ as group elements. In this paper we investigate properties about the degrees of the vertices of $\unicode[STIX]{x1D6E4}(G)$ when $G$ is an alternating group or a symmetric group of degree $n$ . In particular, we determine the vertices of $\unicode[STIX]{x1D6E4}(G)$ having even degree and show that $\unicode[STIX]{x1D6E4}(G)$ is Eulerian if and only if $n\geqslant 3$ and $n$ and $n-1$ are not equal to a prime number congruent to 3 modulo 4.
@article{10_1017_fms_2017_25,
author = {ANDREA LUCCHINI and CLAUDE MARION},
title = {ALTERNATING {AND} {SYMMETRIC} {GROUPS} {WITH} {EULERIAN} {GENERATING} {GRAPH}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2017.25},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.25/}
}
TY - JOUR AU - ANDREA LUCCHINI AU - CLAUDE MARION TI - ALTERNATING AND SYMMETRIC GROUPS WITH EULERIAN GENERATING GRAPH JO - Forum of Mathematics, Sigma PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.25/ DO - 10.1017/fms.2017.25 LA - en ID - 10_1017_fms_2017_25 ER -
ANDREA LUCCHINI; CLAUDE MARION. ALTERNATING AND SYMMETRIC GROUPS WITH EULERIAN GENERATING GRAPH. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.25
Cité par Sources :