DYADIC TRIANGULAR HILBERT TRANSFORM OF TWO GENERAL FUNCTIONS AND ONE NOT TOO GENERAL FUNCTION
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
The so-called triangular Hilbert transform is an elegant trilinear singular integral form which specializes to many well-studied objects of harmonic analysis. We investigate $L^{p}$ bounds for a dyadic model of this form in the particular case when one of the functions on which it acts is essentially one dimensional. This special case still implies dyadic analogues of boundedness of the Carleson maximal operator and of the uniform estimates for the one-dimensional bilinear Hilbert transform.
@article{10_1017_fms_2015_25,
author = {VJEKOSLAV KOVA\v{C} and CHRISTOPH THIELE and PAVEL ZORIN-KRANICH},
title = {DYADIC {TRIANGULAR} {HILBERT} {TRANSFORM} {OF} {TWO} {GENERAL} {FUNCTIONS} {AND} {ONE} {NOT} {TOO} {GENERAL} {FUNCTION}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.25},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.25/}
}
TY - JOUR AU - VJEKOSLAV KOVAČ AU - CHRISTOPH THIELE AU - PAVEL ZORIN-KRANICH TI - DYADIC TRIANGULAR HILBERT TRANSFORM OF TWO GENERAL FUNCTIONS AND ONE NOT TOO GENERAL FUNCTION JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.25/ DO - 10.1017/fms.2015.25 LA - en ID - 10_1017_fms_2015_25 ER -
%0 Journal Article %A VJEKOSLAV KOVAČ %A CHRISTOPH THIELE %A PAVEL ZORIN-KRANICH %T DYADIC TRIANGULAR HILBERT TRANSFORM OF TWO GENERAL FUNCTIONS AND ONE NOT TOO GENERAL FUNCTION %J Forum of Mathematics, Sigma %D 2015 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.25/ %R 10.1017/fms.2015.25 %G en %F 10_1017_fms_2015_25
VJEKOSLAV KOVAČ; CHRISTOPH THIELE; PAVEL ZORIN-KRANICH. DYADIC TRIANGULAR HILBERT TRANSFORM OF TWO GENERAL FUNCTIONS AND ONE NOT TOO GENERAL FUNCTION. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.25
Cité par Sources :