Voir la notice de l'article provenant de la source Cambridge University Press
| $\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$ |
| $\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$ |
@article{10_1017_fmp_2024_9,
author = {Ilya Khayutin and Paul D. Nelson and Raphael S. Steiner},
title = {Theta functions, fourth moments of eigenforms and the sup-norm problem {II}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.9/}
}
TY - JOUR AU - Ilya Khayutin AU - Paul D. Nelson AU - Raphael S. Steiner TI - Theta functions, fourth moments of eigenforms and the sup-norm problem II JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.9/ DO - 10.1017/fmp.2024.9 LA - en ID - 10_1017_fmp_2024_9 ER -
%0 Journal Article %A Ilya Khayutin %A Paul D. Nelson %A Raphael S. Steiner %T Theta functions, fourth moments of eigenforms and the sup-norm problem II %J Forum of Mathematics, Pi %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.9/ %R 10.1017/fmp.2024.9 %G en %F 10_1017_fmp_2024_9
Ilya Khayutin; Paul D. Nelson; Raphael S. Steiner. Theta functions, fourth moments of eigenforms and the sup-norm problem II. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.9
[AL70] and , ‘Hecke operators on ’, Math. Ann. 185 (1970), 134–160.Google Scholar | DOI
[Ass21] , ‘The sup-norm problem beyond the newform’, Preprint, 2021, .Google Scholar | arXiv
[Ass24] , ‘On sup-norm bounds part I: Ramified Maaß newforms over number fields’, J. Eur. Math. Soc. (JEMS) 2024. Published online first.Google Scholar | DOI
[Ber31] , ‘Sur les polynomes orthogonaux relatifs à un segment fini (seconde partie)’, Journal de Mathématiques Pures et Appliquées 10 (1931), 219–286.Google Scholar
[Bér77] , ‘On the wave equation on a compact Riemannian manifold without conjugate points’, Math. Z. 155(3) (1977), 249–276.Google Scholar
[BH10] and , ‘Bounding sup-norms of cusp forms of large level’, Invent. Math. 179(3) (2010), 645–681.Google Scholar | DOI
[BHM16] , and , ‘Bounds for eigenforms on arithmetic hyperbolic -manifolds’, Duke Math. J. 165(4) (2016), 625–659.Google Scholar | DOI
[BHMM20] , , and , ‘The sup-norm problem for over number fields’, J. Eur. Math. Soc. (JEMS) 22(1) (2020), 1–53.Google Scholar | DOI
[BHMM22] , , and , ‘Beyond the spherical sup-norm problem’, J. Math. Pures Appl. (9) 168 (2022), 1–64.Google Scholar | DOI
[BHW93] , and , ‘Successive-minima-type inequalities’, Discrete Comput. Geom. 9(2) (1993), 165–175.Google Scholar | DOI
[BK15] and . -norms of Hecke newforms of large level. Math. Ann. 362(3-4):699–715, 2015.Google Scholar | DOI
[Blo13] , ‘On the 4-norm of an automorphic form’, J. Eur. Math. Soc. (JEMS) 15(5) (2013), 1825–1852.Google Scholar | DOI
[BM11] and , ‘Sup-norms of eigenfunctions on arithmetic ellipsoids’, Int. Math. Res. Not. IMRN (21) (2011), 4934–4966.Google Scholar
[BM13] and , ‘Hybrid bounds for automorphic forms on ellipsoids over number fields’, J. Inst. Math. Jussieu 12(4) (2013), 727–758.Google Scholar | DOI
[Bor63] , ‘Some finiteness properties of adele groups over number fields’, Inst. Hautes Études Sci. Publ. Math. (16) (1963), 5–30.Google Scholar
[Bum97] . Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, vol. 55 (Cambridge University Press, Cambridge, 1997).Google Scholar | DOI
[Cas73] , ‘On some results of Atkin and Lehner’, Math. Ann. 201 (1973), 301–314.Google Scholar | DOI
[Com21] , ‘Optimal sup norm bounds for newforms on with maximally ramified central character’, Forum Math. 33(1) (2021), 1–16.Google Scholar
[Del71] , ‘Formes modulaires et représentations -adiques’, Séminaire Bourbaki , Vol. 1968/1969, Exp. 347-363 179 (1971), 139–172.Google Scholar
[Del74] , ‘La conjecture de Weil. I’, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.Google Scholar | DOI
[GL87] and , Geometry of Numbers, second edn., North-Holland Mathematical Library, vol. 37 (North-Holland Publishing Co., Amsterdam, 1987).Google Scholar | DOI
[Har03] , ‘An additive problem in the Fourier coefficients of cusp forms’, Math. Ann. 326(2) (2003), 347–365.Google Scholar | DOI
[HC19] and , ‘Level aspect subconvexity for twisted -functions’, J. Number Theory 203 (2019), 12–31.Google Scholar | DOI
[HL94] and , ‘Coefficients of Maass forms and the Siegel zero’, Ann. of Math. (2) 140(1) (1994), 161–181. With an appendix by Dorian Goldfeld, Hoffstein and D. Lieman.Google Scholar
[HM06] and , ‘The subconvexity problem for Rankin-Selberg -functions and equidistribution of Heegner points. II’, Invent. Math. 163(3) (2006), 581–655.Google Scholar | DOI
[HN18] and , ‘New test vector for Waldspurger’s period integral, relative trace formula, and hybrid subconvexity bounds’, Preprint, 2018, .Google Scholar | arXiv
[HNS19] , and , ‘Some analytic aspects of automorphic forms on of minimal type’, Comment. Math. Helv. 94(4) (2019), 767–801.Google Scholar
[HS20] and , ‘Sup-norms of eigenfunctions in the level aspect for compact arithmetic surfaces, II: Newforms and subconvexity’, Compos. Math. 156(11) (2020), 2368–2398.Google Scholar | DOI
[HT12] and , ‘On the sup-norm of Maass cusp forms of large level: II’, Int. Math. Res. Not. IMRN (20) (2012), 4764–4774.Google Scholar | DOI
[HT13] and , ‘On the sup-norm of Maass cusp forms of large level. III’, Math. Ann. 356(1) (2013), 209–216.Google Scholar | DOI
[IS95] and , ‘ norms of eigenfunctions of arithmetic surfaces’, Ann. of Math. (2) 141(2) (1995), 301–320.Google Scholar | DOI
[Iwa90] , ‘Small eigenvalues of Laplacian for ’, Acta Arith. 56(1) (1990), 65–82.Google Scholar
[Iwa97] , Topics in Classical Automorphic, Forms Graduate Studies in Mathematics, vol. 17 (American Mathematical Society, Providence, RI, 1997).Google Scholar
[JL70] and , Automorphic forms on , Lecture Notes in Mathematics, vol. 114 (Springer-Verlag, Berlin, 1970).Google Scholar
[KR94] and , ‘A regularized Siegel–Weil formula: The first term identity’, Ann. of Math. (2) 140(1) (1994), 1–80.Google Scholar | DOI
[KS20] and , ‘Theta functions, fourth moments of eigenforms, and the sup-norm problem I’, Preprint, 2020, .Google Scholar | arXiv
[LPS87] , and , ‘Hecke operators and distributing points on ’, II. Comm. Pure Appl. Math. 40(4) (1987), 401–420.Google Scholar | DOI
[Mar16] , ‘Local bounds for norms of Maass forms in the level aspect’, Algebra Number Theory 10(4) (2016), 803–812.Google Scholar | DOI
[Mœg97] , ‘Quelques propriétés de base des séries théta’, J. Lie Theory 7(2) (1997), 231–238.Google Scholar
[Nel15] , ‘Evaluating modular forms on Shimura curves’, Math. Comp. 84(295) (2015), 2471–2503.Google Scholar | DOI
[Nel16] , ‘Quantum variance on quaternion algebras, I’, Preprint, 2016, .Google Scholar | arXiv
[Nel17] , ‘Quantum variance on quaternion algebras, II’, Preprint, 2017, .Google Scholar | arXiv
[Nel19] , ‘Quantum variance on quaternion algebras, III’, Preprint, 2019, .Google Scholar | arXiv
[Nel20] , ‘Bounds for twisted symmetric square -functions via half-integral weight periods’, Forum Math. Sigma 8 (2020), Paper No. e44, 21.Google Scholar | DOI
[Nel21] , ‘The spectral decomposition of ’, Math. Z. 298(3-4) (2021), 1425–1447.Google Scholar | DOI
[Nor21] , ‘Hybrid subconvexity for class group -functions and uniform sup norm bounds of Eisenstein series’, Forum Math. 33(1) (2021), 39–57.Google Scholar | DOI
[PY19] and , ‘The fourth moment of Dirichlet -functions along a coset and the Weyl bound’, arXiv e-prints, 2019, .Google Scholar | arXiv
[Ral84] , ‘On the Howe duality conjecture’, Compositio Math. 51(3) (1984), 333–399.Google Scholar
[RS75] and , ‘Distributions invariantes par le groupe orthogonal’, in Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75), Lecture Notes in Math., vol. 497 (1975), 494–642.Google Scholar | DOI
[Sah17] , ‘On sup-norms of cusp forms of powerful level’, J. Eur. Math. Soc. (JEMS) 19(11) (2017), 3549–3573.Google Scholar | DOI
[Sah20] , ‘Sup-norms of eigenfunctions in the level aspect for compact arithmetic surfaces’, Math. Ann. 376(1-2) (2020), 609–644.Google Scholar | DOI
[Saw21] , ‘A geometric approach to the sup-norm problem for automorphic forms: the case of newforms on with squarefree level’, Proc. Lond. Math. Soc. (3) 123(1) (2021), 1–56.Google Scholar
[Shi72] , ‘Theta series and automorphic forms on ’, J. Math. Soc. Japan 24 (1972), 638–683.Google Scholar | DOI
[Ste20] , ‘Sup-norm of Hecke-Laplace eigenforms on ’, Math. Ann. 377(1-2) (2020), 543–553.Google Scholar
[Ste23] , ‘Small diameters and generators for arithmetic lattices in and certain Ramanujan graphs’, Ramanujan J. 62(4) (2023), 953–966.Google Scholar | DOI
[Tem10] , ‘On the sup-norm of Maass cusp forms of large level’, Selecta Math. (N.S.) 16(3) (2010), 501–531.Google Scholar | DOI
[Tem15] , ‘Hybrid sup-norm bounds for Hecke-Maass cusp forms’, J. Eur. Math. Soc. (JEMS) 17(8) (2015), 2069–2082.Google Scholar | DOI
[Tom23] , ‘Hybrid bounds for the sup-norm of automorphic forms in higher rank’, Trans. Amer. Math. Soc. 376(8) (2023), 5573–5600.Google Scholar | DOI
[vdC36] , ‘Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen, Zweite Mitteilung’, Acta Arithmetica 2(1) (1936), 145–146.Google Scholar
[Vig77] , ‘Séries thêta des formes quadratiques indéfinies’, in Séminaire Delange-Pisot-Poitou, 17e année (1975/76), Théorie des nombres: Fasc. 1, Exp. No. 20 (1977), 3.Google Scholar
[Voi18] , ‘Quaternion algebras’, 2018, https://math.dartmouth.edu/jvoight/quat.html.Google Scholar
[Wal85] , ‘Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie’, Compositio Math. 54(2) (1985), 173–242.Google Scholar
[Wat08] , ‘Rankin triple products and quantum chaos’, Preprint, 2008, .Google Scholar | arXiv
[Wei64] , ‘Sur certains groupes d’opérateurs unitaires’, Acta Math. 111 (1964), 143–211.Google Scholar
[Xia07] , ‘On norms of holomorphic cusp forms’, J. Number Theory 124(2) (2007), 325–327.Google Scholar | DOI
[You17] , ‘Weyl-type hybrid subconvexity bounds for twisted -functions and Heegner points on shrinking sets’, J. Eur. Math. Soc. (JEMS) 19(5) (2017), 1545–1576.Google Scholar | DOI
Cité par Sources :