The definable content of homological invariants II: Čech cohomology and homotopy classification
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functors on the category of locally compact separable metric spaces each factor into (i) what we term their definable version, a functor taking values in the category $\mathsf {GPC}$ of groups with a Polish cover (a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from $\mathsf {GPC}$ to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes of d-spheres or d-tori for any $d\geq 1$, and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functors to show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement $S^3\backslash \Sigma $ to the $2$-sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functors admit two main formulations: a more combinatorial one and a more homotopical formulation as the group $[X,P]$ of homotopy classes of maps from X to a polyhedral $K(G,n)$ space P. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space $\mathrm {Map}(X,P)$ in terms of its subset of phantom maps; relatedly, we provide a topological characterization of this set for any locally compact Polish space X and polyhedron P. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces $\mathrm {Map}(X,P)$, a relation which, together with the more combinatorial incarnation of , embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that if P is a polyhedral H-group, then this relation is both Borel and idealistic. In consequence, $[X,P]$ falls in the category of definable groups, an extension of the category $\mathsf {GPC}$ introduced herein for its regularity properties, which facilitate several of the aforementioned computations.
@article{10_1017_fmp_2024_7,
     author = {Jeffrey Bergfalk and Martino Lupini and Aristotelis Panagiotopoulos},
     title = {The definable content of homological invariants {II:} {\v{C}ech} cohomology and homotopy classification},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.7/}
}
TY  - JOUR
AU  - Jeffrey Bergfalk
AU  - Martino Lupini
AU  - Aristotelis Panagiotopoulos
TI  - The definable content of homological invariants II: Čech cohomology and homotopy classification
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.7/
DO  - 10.1017/fmp.2024.7
LA  - en
ID  - 10_1017_fmp_2024_7
ER  - 
%0 Journal Article
%A Jeffrey Bergfalk
%A Martino Lupini
%A Aristotelis Panagiotopoulos
%T The definable content of homological invariants II: Čech cohomology and homotopy classification
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.7/
%R 10.1017/fmp.2024.7
%G en
%F 10_1017_fmp_2024_7
Jeffrey Bergfalk; Martino Lupini; Aristotelis Panagiotopoulos. The definable content of homological invariants II: Čech cohomology and homotopy classification. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.7

[1] Allison, S. and Panagiotopoulos, A., ‘Dynamical obstructions to classification by (co)homology and other TSI-group invariants’, Trans. Amer. Math. Soc. 374(12) (2021), 8793–8811.Google Scholar | DOI

[2] Arkowitz, M., Introduction to Homotopy Theory (Universitext) (Springer, New York, 2011).Google Scholar | DOI

[3] Bartik, V., ‘Aleksandrov-Čech cohomology and mappings into Eilenberg-MacLane polyhedra’, Mat. Sb. (N.S.) 76(118) (1968), 231–238.Google Scholar

[4] Barwick, C. and Haine, P., ‘Pyknotic sets, I. Basic notions’, https://math.mit.edu/phaine/files/Pyknotic1.pdf (accessed 2021).Google Scholar

[5] Becker, H., ‘The number of path-components of a compact subset of Rn’, in Logic Colloquium ’95 (Haifa) (Lecture Notes Logic) vol. 11 (Springer, Berlin, 1998), 1–16.Google Scholar | DOI

[6] Bergfalk, J. and Lambie-Hanson, C., ‘The cohomology of the ordinals I: basic theory and consistency results’, Preprint, 2019, .Google Scholar | arXiv

[7] Bergfalk, J. and Lambie-Hanson, C., ‘Simultaneously vanishing higher derived limits’, Forum Math. Pi 9(e4) (2021), 31.Google Scholar | DOI

[8] Bergfalk, J., Lupini, M. and Panagiotopoulos, A., ‘Asymptotic cohomology and phantom automorphisms of continuous trace C∗-algebras’, In preparation.Google Scholar

[9] Bergfalk, J. and Lupini, M., ‘The definable content of homological invariants I: Ext & lim1’, Preprint, 2020, .Google Scholar | arXiv

[10] Blackadar, B., Operator Algebras: Theory of c∗-Algebras and Von Neumann Algebras (Encyclopaedia of Mathematical Sciences) vol. 122 (Springer, 2009).Google Scholar

[11] Borsuk, K. and Eilenberg, S., ‘Über stetige Abbildungen der Teilmengen euklidischer Räume auf die Kreislinie’, Fundamenta Mathematicae 26 (1936).Google Scholar | DOI

[12] Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology (Graduate Texts in Mathematics) vol. 82 (Springer-Verlag, New York-Berlin, 1982).Google Scholar | DOI

[13] Bousfield, A. K. and Kan, D. M., Homotopy Limits, Completions and Localizations (Lecture Notes in Mathematics) vol. 304 (Springer-Verlag, Berlin-New York, 1972).Google Scholar

[14] Bradley, T.-D., Bryson, T. and Terilla, J., Topology–A Categorical Approach (MIT Press, Cambridge, MA, 2020).Google Scholar

[15] Brown, E. H. Jr., ‘Cohomology theories’, Ann. of Math. (2) 75 (1962), 467–484.Google Scholar | DOI

[16] Brown, K. S., Cohomology of Groups (Graduate Texts in Mathematics) vol. 87 (Springer-Verlag, New York, 1994). Corrected reprint of the 1982 original.Google Scholar

[17] Brown, L. G., Douglas, R. G. and Fillmore, P. A., ‘Extensions of -algebras and K-homology’, Ann. of Math. (2) 105(2) (1977), 265–324.Google Scholar | DOI

[18] Brown, L. G., ‘Operator algebras and algebraic K-theory’, Bull. Amer. Math. Soc. 81(6) (1975), 1119–1121.Google Scholar | DOI

[19] Brylinski, J.-L., Loop Spaces, Characteristic Classes and Geometric Quantization (Modern Birkhäuser Classics) (Birkhäuser Boston, Inc., Boston, MA, 2008). Reprint of the 1993 edition.Google Scholar

[20] Bühler, T., ‘Exact categories’, Expo. Math. 28(1) (2010), 1–69.Google Scholar | DOI

[21] Camarena, O. A., ‘Turning simplicial complexes into simplicial sets’, https://www.matem.unam.mx/omar/notes/ssetsfrom-complexes.html (accessed 2022).Google Scholar

[22] Ding, L. and Gao, S., ‘Non-archimedean abelian Polish groups and their actions’, Adv. Math. 307 (2017), 312–343.Google Scholar | DOI

[23] Dugger, D., ‘A primer on homotopy colimits’, https://pages.uoregon.edu/ddugger/hocolim.pdf (2008, revised 2017).Google Scholar

[24] Dwyer, W. G. and Spaliński, J., ‘Homotopy theories and model categories’, in Handbook of Algebraic Topology (North-Holland, Amsterdam, 1995), 73–126.Google Scholar | DOI

[25] Eilenberg, S., ‘Karol Borsuk—personal reminiscences’, Topol. Methods Nonlinear Anal. 1(1) (1993), 1–2.Google Scholar | DOI

[26] Eilenberg, S. and Maclane, S., ‘Group extensions and homology’, Ann Math. 43(4) (1942), 757–831.Google Scholar | DOI

[27] Eilenberg, S. and Maclane, S., ‘General theory of natural equivalences’, Trans. Amer. Math. Soc. 58 (1945), 231–294.Google Scholar | DOI

[28] Eilenberg, S. and Maclane, S., ‘Relations between homology and homotopy groups of spaces’, Ann. of Math. (2) 46 (1945), 480–509.Google Scholar | DOI

[29] Eilenberg, S. and Steenrod, N., Foundations of Algebraic Topology (Princeton University Press, Princeton, NJ, 1952).Google Scholar | DOI

[30] Fell, J. M. G., ‘A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space’, Proc. Amer. Math. Soc. 13 (1962), 472–476.Google Scholar | DOI

[31] Gao, S., Invariant Descriptive Set Theory (Pure and Applied Mathematics) vol. 293 (CRC Press, Boca Raton, FL, 2009).Google Scholar

[32] Gray, B. and Mcgibbon, C. A., ‘Universal phantom maps’, Topology 32(2) (1993), 371–394.Google Scholar | DOI

[33] Hatcher, A., ‘Solution to exercise 1 in section 3.c’, https://pi.math.cornell.edu/hatcher/AT/ATsolution3C.1.pdf (accessed 2022).Google Scholar

[34] Hjorth, G., ‘Effective cardinality’, http://www.logic.ucla.edu/greg/research.html (accessed 2022).Google Scholar

[35] Hoffmann, N. and Spitzweck, M., ‘Homological algebra with locally compact abelian groups’, Adv. Math. 212(2) (2007), 504–524.Google Scholar | DOI

[36] Hofmann, K. H. and Morris, S. A., The Structure of Compact Groups (De Gruyter Studies in Mathematics) third edn., vol. 25 (De Gruyter, Berlin, 2013). A primer for the student, a handbook for the expert, revised and augmented.Google Scholar

[37] Hu, S., Homotopy Theory (Pure and Applied Mathematics) vol. VIII (Academic Press, New York-London, 1959).Google Scholar

[38] Hubbard, J. H. and Oberste-Vorth, R. W., ‘Hénon mappings in the complex domain. I. The global topology of dynamical space’, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 5–46.Google Scholar | DOI

[39] Hubbard, J. H. and Oberste-Vorth, R. W., ‘Linked solenoid mappings and the non-transversality locus invariant’, Indiana Univ. Math. J. 50(1) (2001), 553–566.Google Scholar | DOI

[40] Huber, P. J., ‘Homotopical cohomology and Čech cohomology’, Math. Ann. 144 (1961), 73–76.Google Scholar | DOI

[41] Iversen, B., Cohomology of Sheaves (Universitext, Springer-Verlag, Berlin, 1986).Google Scholar | DOI

[42] Kaplan, S., ‘Homology properties of arbitrary subsets of Euclidean spaces’, Trans. Amer. Math. Soc. 62 (1947), 248–271.Google Scholar | DOI

[43] Kechris, A., ‘Classical descriptive set theory; corrections and updates’, http://www.math.caltech.edu/kechris/papers/CDST-corrections.pdf (accessed 2022).Google Scholar

[44] Kechris, A. S., Classical Descriptive Set Theory (Graduate Texts in Mathematics) vol. 156 (Springer-Verlag, New York, 1995).Google Scholar | DOI

[45] Kechris, A. S. and Macdonald, H. L., ‘Borel equivalence relations and cardinal algebras’, Fund. Math. 235(2) (2016), 183–198.Google Scholar

[46] Kelly, G. M., Basic Concepts of Enriched Category Theory (Repr. Theory Appl. Categ.) no. 10 (2005), vi+137. Reprint of the 1982 original.Google Scholar

[47] Kerr, D. and Li, H., Ergodic Theory: Independence and Dichotomies (Springer Monographs in Mathematics) (Springer, Cham, 2016).Google Scholar

[48] Lang, S., Algebra (Graduate Texts in Mathematics), third edn., vol. 211 (Springer-Verlag, New York, 2002).Google Scholar

[49] Lupini, M., ‘Definable Eilenberg–MacLane universal coefficient theorems’, Preprint, 2020, .Google Scholar | arXiv

[50] Lupini, M., ‘Definable K-homology of separable C*-algebras’, Preprint, 2020, .Google Scholar | arXiv

[51] Lupini, M., ‘The classification problem for extensions of torsion-free abelian groups I’, 2022.Google Scholar

[52] Lupini, M., ‘(Looking for) The heart of abelian Polish groups’, Preprint, 2022, .Google Scholar | arXiv

[53] Maclane, S., Categories for the Working Mathematician (Graduate Texts in Mathematics) vol. 5 (Springer-Verlag, New York-Berlin, 1971).Google Scholar

[54] Mardešić, S. and Prasolov, A. V., ‘Strong homology is not additive’, Trans. Amer. Math. Soc. 307(2) (1988), 725–744.Google Scholar | DOI

[55] Mardešić, S., ‘Elementary examples of essential phantom mappings’, Rad Hrvatske Akademije Znanosti i Umjetnosti 19(523) (2015), 143–149.Google Scholar

[56] Mardešić, S. and Segal, J., Shape Theory (North-Holland Mathematical Library) vol. 26 (North-Holland Publishing Co., Amsterdam-New York, 1982).Google Scholar

[57] Margolis, H. R., Spectra and the Steenrod Algebra (North-Holland Mathematical Library) vol. 29 (North-Holland Publishing Co., Amsterdam, 1983).Google Scholar

[58] May, J. P., A Concise Course in Algebraic Topology (Chicago Lectures in Mathematics) (University of Chicago Press, Chicago, IL, 1999).Google Scholar

[59] May, J. P. and Ponto, K., More Concise Algebraic Topology (Chicago Lectures in Mathematics) (University of Chicago Press, Chicago, IL, 2012).Google Scholar

[60] Mcgibbon, C. A., ‘Phantom maps’, in Handbook of Algebraic Topology (North-Holland, Amsterdam, 1995), 1209–1257.Google Scholar | DOI

[61] Mcgibbon, C. A. and Roitberg, J., ‘Phantom Maps and Rational Equivalences’, Amer. J. Math. 116(6) (1994), 1365–1379.Google Scholar | DOI

[62] Mcgibbon, C. A. and Steiner, R., ‘Phantom maps and the towers which determine them’, J. Lond. Math. Soc. (2) 55(3) (1997), 601–608.Google Scholar | DOI

[63] Milnor, J., ‘On axiomatic homology theory’, Pacific J. Math. 12 (1962), 337–341.Google Scholar | DOI

[64] Milnor, J., ‘On spaces having the homotopy type of a CW-complex’, Trans. Amer. Math. Soc. 90 (1959), 272–280.Google Scholar

[65] Moore, C. C., ‘Group extensions and cohomology for locally compact groups. III’, Trans. Amer. Math. Soc. 221(1) (1976), 1–33.Google Scholar | DOI

[66] Ros, L. M., ‘On the complexity of the relations of isomorphism and bi-embeddability’, Proc. Amer. Math. Soc. 140(10) (2012), 309–323.Google Scholar | DOI

[67] Munkres, J. R., Topology: A First Course (Prentice-Hall Inc., Englewood Cliffs, NJ, 1975).Google Scholar

[68] Ornstein, D., ‘Bernoulli shifts with the same entropy are isomorphic’, Adv. Math. 4 (1970), 337–352.Google Scholar | DOI

[69] Ornstein, D. S. and Weiss, B., ‘Entropy and isomorphism theorems for actions of amenable groups’, Journal d’Analyse Math’amatique 48 (1987), 1–141.Google Scholar | DOI

[70] Panagiotopoulos, A. and Solecki, S., ‘The generic combinatorial simplex’, Preprint, 2020, .Google Scholar | arXiv

[71] Petkova, S. V., ‘The axioms of homology theory’, Mat. Sb. (N.S.) 90(132) (1973), 607–624, 640.Google Scholar

[72] Raeburn, I. and Williams, D. P., Morita Equivalence and Continuous-Trace c∗-algebras (Mathematical Surveys and Monographs) vol. 60 (American Mathematical Society, 1998).Google Scholar | DOI

[73] Ramesh, K., ‘Topological rigidity problems’, J. Adv. Stud. Topol. 7(4) (2016), 161–204.Google Scholar

[74] Ruelle, D., ‘What is … a strange attractor?’, Notices Amer. Math. Soc. 53(7) (2006), 764–765.Google Scholar

[75] Sadun, L., Topology of Tiling Spaces (University Lecture Series) vol. 46 (American Mathematical Society, Providence, RI, 2008).Google Scholar

[76] Scheffer, W., ‘Maps between topological groups that are homotopic to homomorphisms’, Proc. Amer. Math. Soc. 33 (1972), 562–567.Google Scholar | DOI

[77] Scholze, P., ‘Lecture notes on condensed mathematics’, https://www.math.unibonn.de/people/scholze/Condensed.pdf (accessed 2021).Google Scholar

[78] Serre, J.-P., ‘Faisceaux algébriques cohérents’, Ann. of Math. (2) 61 (1955), 197–278.Google Scholar | DOI

[79] Smale, S., ‘Differentiable dynamical systems’, Bull. Amer. Math. Soc. 73 (1967), 747–817.Google Scholar | DOI

[80] Spanier, E. H., Algebraic Topology (Springer-Verlag, New York, 1995). Corrected reprint of the 1966 original.Google Scholar

[81] Steenrod, N. E., ‘Regular cycles of compact metric spaces’, Ann. of Math. (2) 41 (1940), 833–851.Google Scholar | DOI

[82] Steenrod, N. E., ‘A convenient category of topological spaces’, Michigan Math. J. 14 (1967), 133–152.Google Scholar | DOI

[83] Stein, K., ‘Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem’, Math. Ann. 123 (1951), 201–222.Google Scholar | DOI

[84] Strom, J., Modern Classical Homotopy Theory (Graduate Studies in Mathematics) vol. 127 (American Mathematical Society, Providence, RI, 2011).Google Scholar

[85] Sullivan, D. P., Geometric Topology: Localization, Periodicity and Galois Symmetry (K-Monographs in Mathematics) vol. 8 (Springer, Dordrecht, 2005). The 1970 MIT notes, edited and with a preface by Andrew Ranicki.Google Scholar | DOI

[86] Switzer, Robert M., Algebraic Topology—Homotopy and Homology Classics in Mathematics (Springer-Verlag, Berlin, 2002). Reprint of the 1975 original.Google Scholar

[87] Dieck, T. Tom, Algebraic Topology (EMS Textbooks in Mathematics) (European Mathematical Society (EMS), Zürich, 2008).Google Scholar

[88] Von Neumann, J., ‘Zur operatorenmethode in der klassischen mechanik’, Ann. of Math. 41(33) (1932), 587–642.Google Scholar | DOI

[89] Weibel, C. A., ‘History of homological algebra’, in History of Topology (North-Holland, Amsterdam, 1999), 797–836.Google Scholar

[90] Williams, R. F., ‘Expanding attractors’, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203.Google Scholar | DOI

Cité par Sources :