Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_7,
author = {Jeffrey Bergfalk and Martino Lupini and Aristotelis Panagiotopoulos},
title = {The definable content of homological invariants {II:} {\v{C}ech} cohomology and homotopy classification},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.7/}
}
TY - JOUR AU - Jeffrey Bergfalk AU - Martino Lupini AU - Aristotelis Panagiotopoulos TI - The definable content of homological invariants II: Čech cohomology and homotopy classification JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.7/ DO - 10.1017/fmp.2024.7 LA - en ID - 10_1017_fmp_2024_7 ER -
%0 Journal Article %A Jeffrey Bergfalk %A Martino Lupini %A Aristotelis Panagiotopoulos %T The definable content of homological invariants II: Čech cohomology and homotopy classification %J Forum of Mathematics, Pi %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.7/ %R 10.1017/fmp.2024.7 %G en %F 10_1017_fmp_2024_7
Jeffrey Bergfalk; Martino Lupini; Aristotelis Panagiotopoulos. The definable content of homological invariants II: Čech cohomology and homotopy classification. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.7
[1] and , ‘Dynamical obstructions to classification by (co)homology and other TSI-group invariants’, Trans. Amer. Math. Soc. 374(12) (2021), 8793–8811.Google Scholar | DOI
[2] , Introduction to Homotopy Theory (Universitext) (Springer, New York, 2011).Google Scholar | DOI
[3] , ‘Aleksandrov-Čech cohomology and mappings into Eilenberg-MacLane polyhedra’, Mat. Sb. (N.S.) 76(118) (1968), 231–238.Google Scholar
[4] and , ‘Pyknotic sets, I. Basic notions’, https://math.mit.edu/phaine/files/Pyknotic1.pdf (accessed 2021).Google Scholar
[5] , ‘The number of path-components of a compact subset of Rn’, in Logic Colloquium ’95 (Haifa) (Lecture Notes Logic) vol. 11 (Springer, Berlin, 1998), 1–16.Google Scholar | DOI
[6] and , ‘The cohomology of the ordinals I: basic theory and consistency results’, Preprint, 2019, .Google Scholar | arXiv
[7] and , ‘Simultaneously vanishing higher derived limits’, Forum Math. Pi 9(e4) (2021), 31.Google Scholar | DOI
[8] , and , ‘Asymptotic cohomology and phantom automorphisms of continuous trace C∗-algebras’, In preparation.Google Scholar
[9] and , ‘The definable content of homological invariants I: Ext & lim1’, Preprint, 2020, .Google Scholar | arXiv
[10] , Operator Algebras: Theory of c∗-Algebras and Von Neumann Algebras (Encyclopaedia of Mathematical Sciences) vol. 122 (Springer, 2009).Google Scholar
[11] and , ‘Über stetige Abbildungen der Teilmengen euklidischer Räume auf die Kreislinie’, Fundamenta Mathematicae 26 (1936).Google Scholar | DOI
[12] and , Differential Forms in Algebraic Topology (Graduate Texts in Mathematics) vol. 82 (Springer-Verlag, New York-Berlin, 1982).Google Scholar | DOI
[13] and , Homotopy Limits, Completions and Localizations (Lecture Notes in Mathematics) vol. 304 (Springer-Verlag, Berlin-New York, 1972).Google Scholar
[14] , and , Topology–A Categorical Approach (MIT Press, Cambridge, MA, 2020).Google Scholar
[15] , ‘Cohomology theories’, Ann. of Math. (2) 75 (1962), 467–484.Google Scholar | DOI
[16] , Cohomology of Groups (Graduate Texts in Mathematics) vol. 87 (Springer-Verlag, New York, 1994). Corrected reprint of the 1982 original.Google Scholar
[17] , and , ‘Extensions of -algebras and K-homology’, Ann. of Math. (2) 105(2) (1977), 265–324.Google Scholar | DOI
[18] , ‘Operator algebras and algebraic K-theory’, Bull. Amer. Math. Soc. 81(6) (1975), 1119–1121.Google Scholar | DOI
[19] , Loop Spaces, Characteristic Classes and Geometric Quantization (Modern Birkhäuser Classics) (Birkhäuser Boston, Inc., Boston, MA, 2008). Reprint of the 1993 edition.Google Scholar
[20] , ‘Exact categories’, Expo. Math. 28(1) (2010), 1–69.Google Scholar | DOI
[21] , ‘Turning simplicial complexes into simplicial sets’, https://www.matem.unam.mx/omar/notes/ssetsfrom-complexes.html (accessed 2022).Google Scholar
[22] and , ‘Non-archimedean abelian Polish groups and their actions’, Adv. Math. 307 (2017), 312–343.Google Scholar | DOI
[23] , ‘A primer on homotopy colimits’, https://pages.uoregon.edu/ddugger/hocolim.pdf (2008, revised 2017).Google Scholar
[24] and , ‘Homotopy theories and model categories’, in Handbook of Algebraic Topology (North-Holland, Amsterdam, 1995), 73–126.Google Scholar | DOI
[25] , ‘Karol Borsuk—personal reminiscences’, Topol. Methods Nonlinear Anal. 1(1) (1993), 1–2.Google Scholar | DOI
[26] and , ‘Group extensions and homology’, Ann Math. 43(4) (1942), 757–831.Google Scholar | DOI
[27] and , ‘General theory of natural equivalences’, Trans. Amer. Math. Soc. 58 (1945), 231–294.Google Scholar | DOI
[28] and , ‘Relations between homology and homotopy groups of spaces’, Ann. of Math. (2) 46 (1945), 480–509.Google Scholar | DOI
[29] and , Foundations of Algebraic Topology (Princeton University Press, Princeton, NJ, 1952).Google Scholar | DOI
[30] , ‘A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space’, Proc. Amer. Math. Soc. 13 (1962), 472–476.Google Scholar | DOI
[31] , Invariant Descriptive Set Theory (Pure and Applied Mathematics) vol. 293 (CRC Press, Boca Raton, FL, 2009).Google Scholar
[32] and , ‘Universal phantom maps’, Topology 32(2) (1993), 371–394.Google Scholar | DOI
[33] , ‘Solution to exercise 1 in section 3.c’, https://pi.math.cornell.edu/hatcher/AT/ATsolution3C.1.pdf (accessed 2022).Google Scholar
[34] , ‘Effective cardinality’, http://www.logic.ucla.edu/greg/research.html (accessed 2022).Google Scholar
[35] and , ‘Homological algebra with locally compact abelian groups’, Adv. Math. 212(2) (2007), 504–524.Google Scholar | DOI
[36] and , The Structure of Compact Groups (De Gruyter Studies in Mathematics) third edn., vol. 25 (De Gruyter, Berlin, 2013). A primer for the student, a handbook for the expert, revised and augmented.Google Scholar
[37] , Homotopy Theory (Pure and Applied Mathematics) vol. VIII (Academic Press, New York-London, 1959).Google Scholar
[38] and , ‘Hénon mappings in the complex domain. I. The global topology of dynamical space’, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 5–46.Google Scholar | DOI
[39] and , ‘Linked solenoid mappings and the non-transversality locus invariant’, Indiana Univ. Math. J. 50(1) (2001), 553–566.Google Scholar | DOI
[40] , ‘Homotopical cohomology and Čech cohomology’, Math. Ann. 144 (1961), 73–76.Google Scholar | DOI
[41] , Cohomology of Sheaves (Universitext, Springer-Verlag, Berlin, 1986).Google Scholar | DOI
[42] , ‘Homology properties of arbitrary subsets of Euclidean spaces’, Trans. Amer. Math. Soc. 62 (1947), 248–271.Google Scholar | DOI
[43] , ‘Classical descriptive set theory; corrections and updates’, http://www.math.caltech.edu/kechris/papers/CDST-corrections.pdf (accessed 2022).Google Scholar
[44] , Classical Descriptive Set Theory (Graduate Texts in Mathematics) vol. 156 (Springer-Verlag, New York, 1995).Google Scholar | DOI
[45] and , ‘Borel equivalence relations and cardinal algebras’, Fund. Math. 235(2) (2016), 183–198.Google Scholar
[46] , Basic Concepts of Enriched Category Theory (Repr. Theory Appl. Categ.) no. 10 (2005), vi+137. Reprint of the 1982 original.Google Scholar
[47] and , Ergodic Theory: Independence and Dichotomies (Springer Monographs in Mathematics) (Springer, Cham, 2016).Google Scholar
[48] , Algebra (Graduate Texts in Mathematics), third edn., vol. 211 (Springer-Verlag, New York, 2002).Google Scholar
[49] , ‘Definable Eilenberg–MacLane universal coefficient theorems’, Preprint, 2020, .Google Scholar | arXiv
[50] , ‘Definable K-homology of separable C*-algebras’, Preprint, 2020, .Google Scholar | arXiv
[51] , ‘The classification problem for extensions of torsion-free abelian groups I’, 2022.Google Scholar
[52] , ‘(Looking for) The heart of abelian Polish groups’, Preprint, 2022, .Google Scholar | arXiv
[53] , Categories for the Working Mathematician (Graduate Texts in Mathematics) vol. 5 (Springer-Verlag, New York-Berlin, 1971).Google Scholar
[54] and , ‘Strong homology is not additive’, Trans. Amer. Math. Soc. 307(2) (1988), 725–744.Google Scholar | DOI
[55] , ‘Elementary examples of essential phantom mappings’, Rad Hrvatske Akademije Znanosti i Umjetnosti 19(523) (2015), 143–149.Google Scholar
[56] and , Shape Theory (North-Holland Mathematical Library) vol. 26 (North-Holland Publishing Co., Amsterdam-New York, 1982).Google Scholar
[57] , Spectra and the Steenrod Algebra (North-Holland Mathematical Library) vol. 29 (North-Holland Publishing Co., Amsterdam, 1983).Google Scholar
[58] , A Concise Course in Algebraic Topology (Chicago Lectures in Mathematics) (University of Chicago Press, Chicago, IL, 1999).Google Scholar
[59] and , More Concise Algebraic Topology (Chicago Lectures in Mathematics) (University of Chicago Press, Chicago, IL, 2012).Google Scholar
[60] , ‘Phantom maps’, in Handbook of Algebraic Topology (North-Holland, Amsterdam, 1995), 1209–1257.Google Scholar | DOI
[61] and , ‘Phantom Maps and Rational Equivalences’, Amer. J. Math. 116(6) (1994), 1365–1379.Google Scholar | DOI
[62] and , ‘Phantom maps and the towers which determine them’, J. Lond. Math. Soc. (2) 55(3) (1997), 601–608.Google Scholar | DOI
[63] , ‘On axiomatic homology theory’, Pacific J. Math. 12 (1962), 337–341.Google Scholar | DOI
[64] , ‘On spaces having the homotopy type of a CW-complex’, Trans. Amer. Math. Soc. 90 (1959), 272–280.Google Scholar
[65] , ‘Group extensions and cohomology for locally compact groups. III’, Trans. Amer. Math. Soc. 221(1) (1976), 1–33.Google Scholar | DOI
[66] , ‘On the complexity of the relations of isomorphism and bi-embeddability’, Proc. Amer. Math. Soc. 140(10) (2012), 309–323.Google Scholar | DOI
[67] , Topology: A First Course (Prentice-Hall Inc., Englewood Cliffs, NJ, 1975).Google Scholar
[68] , ‘Bernoulli shifts with the same entropy are isomorphic’, Adv. Math. 4 (1970), 337–352.Google Scholar | DOI
[69] and , ‘Entropy and isomorphism theorems for actions of amenable groups’, Journal d’Analyse Math’amatique 48 (1987), 1–141.Google Scholar | DOI
[70] and , ‘The generic combinatorial simplex’, Preprint, 2020, .Google Scholar | arXiv
[71] , ‘The axioms of homology theory’, Mat. Sb. (N.S.) 90(132) (1973), 607–624, 640.Google Scholar
[72] and , Morita Equivalence and Continuous-Trace c∗-algebras (Mathematical Surveys and Monographs) vol. 60 (American Mathematical Society, 1998).Google Scholar | DOI
[73] , ‘Topological rigidity problems’, J. Adv. Stud. Topol. 7(4) (2016), 161–204.Google Scholar
[74] , ‘What is … a strange attractor?’, Notices Amer. Math. Soc. 53(7) (2006), 764–765.Google Scholar
[75] , Topology of Tiling Spaces (University Lecture Series) vol. 46 (American Mathematical Society, Providence, RI, 2008).Google Scholar
[76] , ‘Maps between topological groups that are homotopic to homomorphisms’, Proc. Amer. Math. Soc. 33 (1972), 562–567.Google Scholar | DOI
[77] , ‘Lecture notes on condensed mathematics’, https://www.math.unibonn.de/people/scholze/Condensed.pdf (accessed 2021).Google Scholar
[78] , ‘Faisceaux algébriques cohérents’, Ann. of Math. (2) 61 (1955), 197–278.Google Scholar | DOI
[79] , ‘Differentiable dynamical systems’, Bull. Amer. Math. Soc. 73 (1967), 747–817.Google Scholar | DOI
[80] , Algebraic Topology (Springer-Verlag, New York, 1995). Corrected reprint of the 1966 original.Google Scholar
[81] , ‘Regular cycles of compact metric spaces’, Ann. of Math. (2) 41 (1940), 833–851.Google Scholar | DOI
[82] , ‘A convenient category of topological spaces’, Michigan Math. J. 14 (1967), 133–152.Google Scholar | DOI
[83] , ‘Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem’, Math. Ann. 123 (1951), 201–222.Google Scholar | DOI
[84] , Modern Classical Homotopy Theory (Graduate Studies in Mathematics) vol. 127 (American Mathematical Society, Providence, RI, 2011).Google Scholar
[85] , Geometric Topology: Localization, Periodicity and Galois Symmetry (K-Monographs in Mathematics) vol. 8 (Springer, Dordrecht, 2005). The 1970 MIT notes, edited and with a preface by Andrew Ranicki.Google Scholar | DOI
[86] , Algebraic Topology—Homotopy and Homology Classics in Mathematics (Springer-Verlag, Berlin, 2002). Reprint of the 1975 original.Google Scholar
[87] , Algebraic Topology (EMS Textbooks in Mathematics) (European Mathematical Society (EMS), Zürich, 2008).Google Scholar
[88] , ‘Zur operatorenmethode in der klassischen mechanik’, Ann. of Math. 41(33) (1932), 587–642.Google Scholar | DOI
[89] , ‘History of homological algebra’, in History of Topology (North-Holland, Amsterdam, 1999), 797–836.Google Scholar
[90] , ‘Expanding attractors’, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203.Google Scholar | DOI
Cité par Sources :