On the ergodic theory of the real Rel foliation
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.
@article{10_1017_fmp_2024_6,
     author = {Jon Chaika and Barak Weiss},
     title = {On the ergodic theory of the real {Rel} foliation},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.6/}
}
TY  - JOUR
AU  - Jon Chaika
AU  - Barak Weiss
TI  - On the ergodic theory of the real Rel foliation
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.6/
DO  - 10.1017/fmp.2024.6
LA  - en
ID  - 10_1017_fmp_2024_6
ER  - 
%0 Journal Article
%A Jon Chaika
%A Barak Weiss
%T On the ergodic theory of the real Rel foliation
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.6/
%R 10.1017/fmp.2024.6
%G en
%F 10_1017_fmp_2024_6
Jon Chaika; Barak Weiss. On the ergodic theory of the real Rel foliation. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.6

[AG] Avila, A. and Gouëzel, S., ‘Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow’, Ann. of Math. (2) 178 (2010), 385–442.Google Scholar | DOI

[AGY] Avila, A., Gouëzel, S. and Yoccoz, J.-C., ’Exponential mixing for the Teichmüller flow’, Publ. Math. IHES 104 (2006), 143–211.Google Scholar | DOI

[AEM] Artur, A. Avila, Alex, A. Eskin and Möller, M., ‘Symplectic and isometric - invariant subbundles of the Hodge bundle’, J. Reine Angew. Math. 732 (2017), 1–20.Google Scholar

[BSW] Bainbridge, M., Smillie, J. and Weiss, B., ‘Horocycle dynamics: new invariants and eigenform loci in the stratum H’, Mem. AMS. 1384 (2022), 100p.Google Scholar

[CDF] Calsamiglia, G., Deroin, B. and Francaviglia, S., ‘A transfer principle: from periods to isoperiodic foliations’, Geom. Funct. Anal. 33 (2023), 57–169.Google Scholar | DOI

[CSW] Chaika, J., Smillie, J. and Weiss, B., ‘Tremors and horocycle dynamics on the moduli space of translation surfaces’, Preprint, 2020.Google Scholar

[CWY] Chaika, J., Weiss, B. and Ygouf, F., ‘Horocycle dynamics in rank one invariant subvarities I: weak measure classification and equidistribution’, Preprint, 2023.Google Scholar

[ChWr] Chen, D. and Wright, A., ‘The WYSIWYG compactification’, J. London Math. Soc. 103(2), (2021) 490–515.Google Scholar | DOI

[EW] Einsiedler, M. and Ward, T., Ergodic Theory with a View Towards Number Theory (Grad. Texts in Math.) vol. 259 (Springer, 2010).Google Scholar

[ELW] Einsiedler, M., Lindenstrauss, E. and Ward, T., Entropy in Ergodic Theory and Topological Dynamics, in preparation, preliminary version available at https://tbward0.wixsite.com/books/entropy.Google Scholar

[EFW] Eskin, A., Filip, S. and Wright, A., ‘The algebraic hull of the Kontsevich-Zorich cocycle’, Ann. of Math. (2) 188(1) (2018), 281–313.Google Scholar | DOI

[EM] Eskin, A. and Mirzakhani, M., ‘Invariant and stationary measures for the -action on moduli space’, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 95–324.Google Scholar | DOI

[EMM] Eskin, A., Mirzakhani, M. and Mohammadi, A., ‘Isolation, equidistribution, and orbit closures for the -action on moduli space’, Ann. Math. (2) 182(2) (2015), 673–721.Google Scholar | DOI

[Ham] Hamenstädt, U., ‘Ergodicity of the absolute period foliation’, Israel J. Math. 225(2) (2018), 661–680.Google Scholar | DOI

[FM] Farb, B. and Margalit, D., A Primer on Mapping Class Groups (Princeton Mathematical Series) vol. 49 (Princeton University Press, 2012).Google Scholar

[Fi] Filip, S., ‘Semisimplicity and rigidity of the Kontsevich-Zorich Cocycle’, Invent. Math. 205(3) (2016), 617–670.Google Scholar | DOI

[Gl] Glasner, E., Ergodic Theory via Joinings (Mathematical Surveys and Monographs) vol. 101 (American Mathematical Society, 2003).Google Scholar | DOI

[HW] Hooper, P. and Weiss, B., ‘Rel leaves of the Arnoux-Yoccoz surfaces’, Selecta Math. 24(2) (2018), 875–934. With an appendix by L. Bary-Soroker, M. Shusterman and U. Zannier.Google Scholar | DOI

[KT] Katok, A. B. and Thouvenot, J.-P.Spectral properties and combinatorial constructions in ergodic theory’, in Handbook of Dynamical Systems vol. 1B (Elsevier, 2006), 649–753.Google Scholar

[KZ] Kontsevich, M. and Zorich, A., ‘Connected components of the moduli spaces of Abelian differentials with prescribed singularities’, Invent. Math. 153(3) (2003), 631–678.Google Scholar | DOI

[Li] Lindsey, K., ‘Counting invariant components of hyperelliptic translation surfaces’, Israel J. Math. 210 (2015), 125–146.Google Scholar | DOI

[MS] Masur, H. and Smillie, J., ‘Hausdorff dimension of sets of nonergodic measured foliations’, Ann. Math. 134 (1991), 455–543.Google Scholar | DOI

[MaTa] Masur, H. and Tabachnikov, S., ‘Rational billiards and flat structures’, in Handbook of Dynamical Systems (Enc. Math. Sci. Ser.) (2001).Google Scholar

[McM] Mcmullen, C., ‘Moduli spaces of isoperiodic forms on Riemann surfaces’, Duke Math. J. 163(12) (2014), 2271–2323.Google Scholar | DOI

[MW] Minsky, Y. and Weiss, B., ‘Cohomology classes represented by measured foliations, and Mahler’s question for interval exchanges’, Annales Sci. de L’ENS 2 (2014), 245–284.Google Scholar

[MiWr] Mirzakhani, M. and Wright, A., ‘The boundary of an affine invariant manifold’, Invent. Math. 209 (2017), 927–984.Google Scholar | DOI

[Mo] Mozes, S., ‘Mixing of all orders of Lie groups actions’, Invent. Math. 107(2) (1992), 235–241.Google Scholar | DOI

[P] Petersen, K., Ergodic Theory (Cambridge Studies in Advanced Mathematics) vol. 2 (Cambridge University Press, 1983).Google Scholar | DOI

[dlR] De La Rue, T., ‘An introduction to joinings in ergodic theory’, Disc. Cont. Dyn. Sys. 15(1) (2006), 121–142.Google Scholar | DOI

[Va] Varadarajan, V. S., ‘Groups of automorphisms of Borel spaces’, Trans. Amer. Math. Soc. 109 (1963), 191–220.Google Scholar | DOI

[Wi1] Winsor, K., ‘Dynamics of the absolute period foliation of a stratum of holomorphic 1-forms’, Preprint, 2021, .Google Scholar | arXiv

[Wi2] Winsor, K., ‘Dense real Rel flow orbits and absolute period leaves’, Preprint, 2022, .Google Scholar | arXiv

[Wr1] Wright, A., ‘Translation surfaces and their orbit closures: an introduction for a broad audience’, EMS Surv. Math. Sci. 2(1) (2015), 63–108.Google Scholar | DOI

[Wr2] Wright, A., ‘The field of definition of affine invariant submanifolds of the moduli space of abelian differentials’, Geom. Topol. 18(3) (2014), 1323–1341.Google Scholar | DOI

[Y] Ygouf, F., ‘A criterion for density of the isoperiodic leaves in rank 1 affine invariant suborbifolds’, J. Topol. 16 (2023), 1–19.Google Scholar | DOI

[Zo] Zorich, A., ‘Flat surfaces’, in Cartier, P., Julia, B., Moussa, P. and Vanhove, P. (eds), Frontiers in Number Theory, Physics and Geometry (Springer, 2006).Google Scholar

Cité par Sources :