The Chromatic Fourier Transform
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height $n=0$, as well as a certain duality for the $E_n$-(co)homology of $\pi $-finite spectra, established by Hopkins and Lurie, at heights $n\ge 1$. We use this theory to generalize said duality in three different directions. First, we extend it from $\mathbb {Z}$-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of $E_n$. Second, we lift it to the telescopic setting by replacing $E_n$ with $T(n)$-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal $\infty $-categories of local systems of $K(n)$-local $E_n$-modules [-12pc] and relate it to (semiadditive) redshift phenomena.The Great Wave off Kanagawa, Katsushika Hokusai.
@article{10_1017_fmp_2024_5,
     author = {Tobias Barthel and Shachar Carmeli and Tomer M. Schlank and Lior Yanovski},
     title = {The {Chromatic} {Fourier} {Transform}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.5/}
}
TY  - JOUR
AU  - Tobias Barthel
AU  - Shachar Carmeli
AU  - Tomer M. Schlank
AU  - Lior Yanovski
TI  - The Chromatic Fourier Transform
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.5/
DO  - 10.1017/fmp.2024.5
LA  - en
ID  - 10_1017_fmp_2024_5
ER  - 
%0 Journal Article
%A Tobias Barthel
%A Shachar Carmeli
%A Tomer M. Schlank
%A Lior Yanovski
%T The Chromatic Fourier Transform
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.5/
%R 10.1017/fmp.2024.5
%G en
%F 10_1017_fmp_2024_5
Tobias Barthel; Shachar Carmeli; Tomer M. Schlank; Lior Yanovski. The Chromatic Fourier Transform. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.5

[ACS19] Arad, E., Carmeli, S. and Schlank, T. M., ‘Étale homotopy obstructions of arithmetic spheres’, Preprint, 2019, .Google Scholar | arXiv

[AHR10] Ando, M., Hopkins, M. J. and Rezk, C., ‘Multiplicative orientations of -theory and of the spectrum of topological modular forms’, Preprint, 2010, https://faculty.math.illinois.edu/mando/papers/koandtmf.pdf.Google Scholar

[Bau08] Bauer, T., ‘Convergence of the Eilenberg-Moore spectral sequence for generalized cohomology theories’, Preprint, 2008, .Google Scholar | arXiv

[BB20] Barthel, T. and Beaudry, A., ‘Chromatic structures in stable homotopy theory’, in Handbook of Homotopy Theory (CRC Press/Chapman Hall Handb. Math. Ser.) (CRC Press, Boca Raton, FL, 2020), 163–220.Google Scholar | DOI

[BR05] Baker, A. and Richter, B., ‘Invertible modules for commutative -algebras with residue fields’, Manuscripta Math. 118(1) (2005), 99–119.Google Scholar | DOI

[BSY22] Burklund, R., Schlank, T. M. and Yuan, A., ‘The chromatic Nullstellensatz’, Preprint, 2022, .Google Scholar | arXiv

[CMNN20] Clausen, D., Mathew, A., Naumann, N. and Noel, J., ‘Descent and vanishing in chromatic algebraic -theory via group actions’, Preprint, 2020, 2020.Google Scholar | arXiv

[CNY] Carmeli, S., Nikolaus, T. and Yuan, A., ‘Maps between spherical group algebras’, In progress.Google Scholar

[CSY21a] Carmeli, S., Schlank, T. M. and Yanovski, L., ‘Ambidexterity and height’, Adv. Math. 385(Paper No. 107763) (2021), 901.Google Scholar | DOI

[CSY21b] Carmeli, S., Schlank, T. M. and Yanovski, Lior, ‘Chromatic cyclotomic extensions’, 2021, Preprint, .Google Scholar | arXiv

[CSY22] Carmeli, S., Schlank, T. M. and Yanovski, L., ‘Ambidexterity in chromatic homotopy theory’, Invent. Math. 228(3) (2022), 1145–1254.Google Scholar | DOI

[DH04] Devinatz, E. S. and Hopkins, M. J., ‘Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups’, Topology 43(1) (2004), 1–47.Google Scholar | DOI

[DHS88] Devinatz, E. S., Hopkins, M. J. and Smith, J. H., ‘Nilpotence and stable homotopy theory. I’, Ann. of Math. (2) 128(2) (1988), 207–241.Google Scholar | DOI

[FH21] Freed, D. S. and Hopkins, M. J, ‘Reflection positivity and invertible topological phases’, Geom. Topol. 25(3) (2021), 1165–1330.Google Scholar | DOI

[GGN16] Gepner, D., Groth, M. and Nikolaus, T., ‘Universality of multiplicative infinite loop space machines’, Algebr. Geom. Topol. 15(6) (2016), 3107–3153.Google Scholar | DOI

[GH04] Goerss, P. G. and Hopkins, M. J., ‘Moduli spaces of commutative ring spectra’, in Structured Ring Spectra (London Mathematical Society Lecture Note Series) vol. 315 (Cambridge University Press, 2004), 151–200.Google Scholar | DOI

[Har20] Harpaz, Y., ‘Ambidexterity and the universality of finite spans’, Proceedings of the London Mathematical Society 121(5) (2020), 1121–1170.Google Scholar | DOI

[Heu] Heuts, G., ‘On periodic homotopy and homology equivalences’, In progress.Google Scholar

[Heu21] Heuts, G., ‘Lie algebras and -periodic spaces’, Ann. Math. 193(1) (2021), 223–301.Google Scholar | DOI

[Hin21] Hinich, V., ‘Colimits in enriched ∞-categories and day convolution’, Preprint, 2021, .Google Scholar | arXiv

[HL13] Hopkins, M. and Lurie, J., ‘Ambidexterity in -local stable homotopy theory’, Preprint, 2013.Google Scholar

[HS98] Hopkins, M. J. and Smith, J. H., ‘Nilpotence and stable homotopy theory II’, Ann. of Math. (2) 148(1) (1998), 1–49.Google Scholar | DOI

[HS99] Hovey, M. and Strickland, N. P., Morava K-Theories and Localisation vol. 666 (American Mathematical Society, 1999).Google Scholar | DOI

[LMMT20] Land, M., Mathew, A., Meier, L. and Tamme, G., ‘Purity in chromatically localized algebraic -theory’, Preprint, 2020, .Google Scholar | arXiv

[Lur] Lurie, J., Higher Algebra, http://www.math.harvard.edu/lurie/.Google Scholar

[Lur09] Lurie, J., Higher Topos Theory (Annals of Mathematics Studies) vol. 170 (Princeton University Press, Princeton, NJ, 2009).Google Scholar | DOI

[Lur17] Lurie, J., ‘Elliptic cohomology I: spectral abelian varieties’, https://www.math.ias.edu/lurie/papers/Elliptic-I.pdf.Google Scholar

[Lur18a] Lurie, J., ‘Elliptic cohomology II: orientations’, https://www.math.ias.edu/lurie/papers/Elliptic-II.pdf.Google Scholar

[Lur18b] Lurie, J., ‘Elliptic cohomology III: Tempered cohomology’, https://www.math.ias.edu/lurie/papers/Elliptic-III-Tempered.pdf.Google Scholar

[Man01] Mandell, M. A., ‘ algebras and -adic homotopy theory’, Topology 40(1) (2001), 43–94.Google Scholar | DOI

[Mat16] Mathew, A., ‘The Galois group of a stable homotopy theory’, Adv. Math. 291 (2016), 403–541.Google Scholar | DOI

[MM15] Mathew, A. and Meier, L., ‘Affineness and chromatic homotopy theory’, J. Topol. 8(2) (2015), 476–528.Google Scholar | DOI

[MR99] Mahowald, M. and Rezk, C., ‘Brown-Comenetz duality and the Adams spectral sequence’, Amer. J. Math. 121(6) (1999), 1153–1177.Google Scholar | DOI

[MS16] Mathew, A. and Stojanoska, V., ‘The Picard group of topological modular forms via descent theory’, Geom. Topol. 20(6) (2016), 3133–3217.Google Scholar | DOI

[MS21] Moshe, S. B. and Schlank, T. M., ‘Higher semiadditive algebraic K-theory and redshift’, Preprint, 2021, .Google Scholar | arXiv

[Rog08] Rognes, J., Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups: Stably Dualizable Groups vol. 192 (American Mathematical Society, 2008).Google Scholar | DOI

[Rog14] Rognes, J., ‘Chromatic redshift’, Preprint, 2014, .Google Scholar | arXiv

[RS22] Ragimov, S. and Schlank, T. M., ‘The ∞-categorical reflection theorem and applications’, E-print, 2022, .Google Scholar | arXiv

[Tre15] Treumann, D., ‘Representations of finite groups on modules over K-theory (with an appendix by Akhil Mathew)’, E-print, 2015, .Google Scholar | arXiv

[Wes17] Westerland, C., ‘A higher chromatic analogue of the image of J’, Geom.Topol. 21(2) (2017), 1033–1093.Google Scholar | DOI

[Yua22] Yuan, A., ‘The sphere of semiadditive height 1’, E-print, 2022, .Google Scholar | arXiv | DOI

Cité par Sources :