Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_5,
author = {Tobias Barthel and Shachar Carmeli and Tomer M. Schlank and Lior Yanovski},
title = {The {Chromatic} {Fourier} {Transform}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.5/}
}
TY - JOUR AU - Tobias Barthel AU - Shachar Carmeli AU - Tomer M. Schlank AU - Lior Yanovski TI - The Chromatic Fourier Transform JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.5/ DO - 10.1017/fmp.2024.5 LA - en ID - 10_1017_fmp_2024_5 ER -
Tobias Barthel; Shachar Carmeli; Tomer M. Schlank; Lior Yanovski. The Chromatic Fourier Transform. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.5
[ACS19] , and , ‘Étale homotopy obstructions of arithmetic spheres’, Preprint, 2019, .Google Scholar | arXiv
[AHR10] , and , ‘Multiplicative orientations of -theory and of the spectrum of topological modular forms’, Preprint, 2010, https://faculty.math.illinois.edu/mando/papers/koandtmf.pdf.Google Scholar
[Bau08] , ‘Convergence of the Eilenberg-Moore spectral sequence for generalized cohomology theories’, Preprint, 2008, .Google Scholar | arXiv
[BB20] and , ‘Chromatic structures in stable homotopy theory’, in Handbook of Homotopy Theory (CRC Press/Chapman Hall Handb. Math. Ser.) (CRC Press, Boca Raton, FL, 2020), 163–220.Google Scholar | DOI
[BR05] and , ‘Invertible modules for commutative -algebras with residue fields’, Manuscripta Math. 118(1) (2005), 99–119.Google Scholar | DOI
[BSY22] , and , ‘The chromatic Nullstellensatz’, Preprint, 2022, .Google Scholar | arXiv
[CMNN20] , , and , ‘Descent and vanishing in chromatic algebraic -theory via group actions’, Preprint, 2020, 2020.Google Scholar | arXiv
[CNY] , and , ‘Maps between spherical group algebras’, In progress.Google Scholar
[CSY21a] , and , ‘Ambidexterity and height’, Adv. Math. 385(Paper No. 107763) (2021), 901.Google Scholar | DOI
[CSY21b] , and , ‘Chromatic cyclotomic extensions’, 2021, Preprint, .Google Scholar | arXiv
[CSY22] , and , ‘Ambidexterity in chromatic homotopy theory’, Invent. Math. 228(3) (2022), 1145–1254.Google Scholar | DOI
[DH04] and , ‘Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups’, Topology 43(1) (2004), 1–47.Google Scholar | DOI
[DHS88] , and , ‘Nilpotence and stable homotopy theory. I’, Ann. of Math. (2) 128(2) (1988), 207–241.Google Scholar | DOI
[FH21] and , ‘Reflection positivity and invertible topological phases’, Geom. Topol. 25(3) (2021), 1165–1330.Google Scholar | DOI
[GGN16] , and , ‘Universality of multiplicative infinite loop space machines’, Algebr. Geom. Topol. 15(6) (2016), 3107–3153.Google Scholar | DOI
[GH04] and , ‘Moduli spaces of commutative ring spectra’, in Structured Ring Spectra (London Mathematical Society Lecture Note Series) vol. 315 (Cambridge University Press, 2004), 151–200.Google Scholar | DOI
[Har20] , ‘Ambidexterity and the universality of finite spans’, Proceedings of the London Mathematical Society 121(5) (2020), 1121–1170.Google Scholar | DOI
[Heu] , ‘On periodic homotopy and homology equivalences’, In progress.Google Scholar
[Heu21] , ‘Lie algebras and -periodic spaces’, Ann. Math. 193(1) (2021), 223–301.Google Scholar | DOI
[Hin21] , ‘Colimits in enriched ∞-categories and day convolution’, Preprint, 2021, .Google Scholar | arXiv
[HL13] and , ‘Ambidexterity in -local stable homotopy theory’, Preprint, 2013.Google Scholar
[HS98] and , ‘Nilpotence and stable homotopy theory II’, Ann. of Math. (2) 148(1) (1998), 1–49.Google Scholar | DOI
[HS99] and , Morava K-Theories and Localisation vol. 666 (American Mathematical Society, 1999).Google Scholar | DOI
[LMMT20] , , and , ‘Purity in chromatically localized algebraic -theory’, Preprint, 2020, .Google Scholar | arXiv
[Lur] , Higher Algebra, http://www.math.harvard.edu/lurie/.Google Scholar
[Lur09] , Higher Topos Theory (Annals of Mathematics Studies) vol. 170 (Princeton University Press, Princeton, NJ, 2009).Google Scholar | DOI
[Lur17] , ‘Elliptic cohomology I: spectral abelian varieties’, https://www.math.ias.edu/lurie/papers/Elliptic-I.pdf.Google Scholar
[Lur18a] , ‘Elliptic cohomology II: orientations’, https://www.math.ias.edu/lurie/papers/Elliptic-II.pdf.Google Scholar
[Lur18b] , ‘Elliptic cohomology III: Tempered cohomology’, https://www.math.ias.edu/lurie/papers/Elliptic-III-Tempered.pdf.Google Scholar
[Man01] , ‘ algebras and -adic homotopy theory’, Topology 40(1) (2001), 43–94.Google Scholar | DOI
[Mat16] , ‘The Galois group of a stable homotopy theory’, Adv. Math. 291 (2016), 403–541.Google Scholar | DOI
[MM15] and , ‘Affineness and chromatic homotopy theory’, J. Topol. 8(2) (2015), 476–528.Google Scholar | DOI
[MR99] and , ‘Brown-Comenetz duality and the Adams spectral sequence’, Amer. J. Math. 121(6) (1999), 1153–1177.Google Scholar | DOI
[MS16] and , ‘The Picard group of topological modular forms via descent theory’, Geom. Topol. 20(6) (2016), 3133–3217.Google Scholar | DOI
[MS21] and , ‘Higher semiadditive algebraic K-theory and redshift’, Preprint, 2021, .Google Scholar | arXiv
[Rog08] , Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups: Stably Dualizable Groups vol. 192 (American Mathematical Society, 2008).Google Scholar | DOI
[Rog14] , ‘Chromatic redshift’, Preprint, 2014, .Google Scholar | arXiv
[RS22] and , ‘The ∞-categorical reflection theorem and applications’, E-print, 2022, .Google Scholar | arXiv
[Tre15] , ‘Representations of finite groups on modules over K-theory (with an appendix by Akhil Mathew)’, E-print, 2015, .Google Scholar | arXiv
[Wes17] , ‘A higher chromatic analogue of the image of J’, Geom.Topol. 21(2) (2017), 1033–1093.Google Scholar | DOI
[Yua22] , ‘The sphere of semiadditive height 1’, E-print, 2022, .Google Scholar | arXiv | DOI
Cité par Sources :