Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in $H^s({{\mathbb {R}}})$ for any regularity $s>-\frac 12$. Well-posedness has long been known for $s\geq 0$, see [55], but not previously for any $s0$. The scaling-critical value $s=-\frac 12$ is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in $H^s({{\mathbb {R}}})$ for any $s>-\frac 12$. The best regularity achieved previously was $s\geq \tfrac 14$ (see [15, 24, 33, 39]).To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.
@article{10_1017_fmp_2024_4,
     author = {Benjamin Harrop-Griffiths and Rowan Killip and Monica Vi\c{s}an},
     title = {Sharp well-posedness for the cubic {NLS} and {mKdV} in $H^s({{\mathbb {R}}})$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.4/}
}
TY  - JOUR
AU  - Benjamin Harrop-Griffiths
AU  - Rowan Killip
AU  - Monica Vişan
TI  - Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.4/
DO  - 10.1017/fmp.2024.4
LA  - en
ID  - 10_1017_fmp_2024_4
ER  - 
%0 Journal Article
%A Benjamin Harrop-Griffiths
%A Rowan Killip
%A Monica Vişan
%T Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.4/
%R 10.1017/fmp.2024.4
%G en
%F 10_1017_fmp_2024_4
Benjamin Harrop-Griffiths; Rowan Killip; Monica Vişan. Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.4

[1] Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., ‘The inverse scattering transform-Fourier analysis for nonlinear problems’, Studies in Appl. Math. 53(4) (1974), 249–315.Google Scholar | DOI

[2] Birnir, B., Ponce, G. and Svanstedt, N., ‘The local ill-posedness of the modified KdV equation’, Ann. Inst. H. Poincaré Anal. Non Linéaire 13(4) (1996), 529–535.Google Scholar | DOI

[3] Bourgain, J., ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations’, Geom. Funct. Anal. 3(2) (1993), 107–156.Google Scholar | DOI

[4] Bourgain, J., ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation’, Geom. Funct. Anal. 3(3) (1993), 209–262.Google Scholar | DOI

[5] Bringmann, B., Killip, R. and Visan, M., ‘Global well-posedness for the fifth-order KdV equation in ’, Ann. PDE 7(2) (2021), Paper No. 21, 46.Google Scholar | DOI

[6] Burq, N., Gérard, P. and Tzvetkov, N., ‘An instability property of the nonlinear Schrödinger equation on ’, Math. Res. Lett. 9(2–3) (2002), 323–335.Google Scholar | DOI

[7] Chapouto, A., ‘A remark on the well-posedness of the modified KDV equation in the Fourier-Lebesgue spaces’, Discrete Contin. Dyn. Syst. 41(8) (2021), 3915–3950.Google Scholar | DOI

[8] Chen, M. and Guo, B., ‘Local well and ill posedness for the modified KdV equations in subcritical modulation spaces’, Commun. Math. Sci. 18(4) (2020), 909–946.Google Scholar | DOI

[9] Christ, M., ‘Power series solution of a nonlinear Schrödinger equation’, in Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Mathematics Studies, volume 163 (Princeton University Press, Princeton, NJ, 2007), 131–155.Google Scholar

[10] Christ, M., Colliander, J. and Tao, T., ‘Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations’, Amer. J. Math. 125(6) (2003), 1235–1293.Google Scholar | DOI

[11] Christ, M., Colliander, J. and Tao, T., ‘Ill-posedness for nonlinear Schrödinger and wave equations’, Preprint, 2003, .Google Scholar | arXiv

[12] Christ, M., Colliander, J. and Tao, T., ‘Instability of the periodic nonlinear Schrödinger equation’, Preprint, 2003, .Google Scholar | arXiv

[13] Christ, M., Colliander, J. and Tao, T., ‘A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order’, J. Funct. Anal. 254(2) (2008), 368–395.Google Scholar | DOI

[14] Christ, M., Holmer, J. and Tataru, D., ‘Low regularity a priori bounds for the modified Korteweg-de Vries equation’, Lib. Math. (N.S.) 32(1) (2012), 51–75.Google Scholar

[15] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., ‘Sharp global well-posedness for KdV and modified KdV on and ’, J. Amer. Math. Soc. 16(3) (2003), 705–749.Google Scholar | DOI

[16] Faddeev, L. D. and Takhtajan, L. A., ‘Hamiltonian methods in the theory of solitons’, in Classics in Mathematics (Springer, Berlin, English edition, 2007), i–594. Translated from the 1986 Russian original by Alexey G. Reyman.Google Scholar

[17] Gardner, C. S., Greene, J. M., Kruskal, M. D. and Miura, R. M., ‘Method for solving the Korteweg-Devries equation’, Phys. Rev. Lett. 19 (1967), 1095–1097.Google Scholar | DOI

[18] Grünrock, A., ‘An improved local well-posedness result for the modified KdV equation’, Int. Math. Res. Not. 2004(61) (2004), 3287–3308.Google Scholar | DOI

[19] Grünrock, A., ‘Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS’, Int. Math. Res. Not. 2005(41) (2005), 2525–2558.Google Scholar | DOI

[20] Grünrock, A., ‘On the hierarchies of higher order mKdV and KdV equations’, Cent. Eur. J. Math. 8(3) (2010), 500–536.Google Scholar | DOI

[21] Grünrock, A. and Herr, S., ‘Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data’, SIAM J. Math. Anal. 39(6) (2008), 1890–1920.Google Scholar | DOI

[22] Grünrock, A. and Vega, L., ‘Local well-posedness for the modified KdV equation in almost critical -spaces’, Trans. Amer. Math. Soc. 361(11) (2009), 5681–5694.Google Scholar | DOI

[23] Guo, S., ‘On the 1D cubic nonlinear Schrödinger equation in an almost critical space’, J. Fourier Anal. Appl. 23(1) (2017), 91–124.Google Scholar | DOI

[24] Guo, Z., ‘Global well-posedness of Korteweg-de Vries equation in ’, J. Math. Pures Appl . (9) 91(6) (2009), 583–597.Google Scholar | DOI

[25] Guo, Z., Kwon, S. and Oh, T., ‘Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS’, Comm. Math. Phys. 322(1) (2013), 19–48.Google Scholar | DOI

[26] Guo, Z. and Oh, T., ‘Non-existence of solutions for the periodic cubic NLS below ’, Int. Math. Res. Not. IMRN 2018(6) (2018), 1656–1729.Google Scholar

[27] Harrop-Griffiths, B., Killip, R. and Vişan, M., ‘Microscopic conservation laws for integrable lattice models’, Monatsh. Math. 196(3) (2021), 477–504.Google Scholar | DOI

[28] Kappeler, T. and Molnar, J.-C., ‘On the well-posedness of the defocusing mKdV equation below ’, SIAM J. Math. Anal. 49(3) (2017), 2191–2219.Google Scholar | DOI

[29] Kappeler, T. and Topalov, P., ‘Global well-posedness of mKdV in ’, Commun. Partial Differ. Equ. 30(1–3) (2005), 435–449.Google Scholar | DOI

[30] Kato, T., ‘On the Cauchy problem for the (generalized) Korteweg–de Vries equation’, in Studies in Applied Mathematics, Advances in Mathematics Supplement Studies, volume 8 (Academic Press, New York, 1983), 93–128.Google Scholar

[31] Kato, T., ‘On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness’, J. Anal. Math. 67 (1995), 281–306.Google Scholar | DOI

[32] Kato, T., ‘Correction to: “On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness”’, J. Anal. Math. 68 (1996), 305.Google Scholar | DOI

[33] Kenig, C. E., Ponce, G. and Vega, L., ‘Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle’, Comm. Pure Appl. Math. 46(4) (1993), 527–620.Google Scholar | DOI

[34] Kenig, C. E., Ponce, G. and Vega, L., ‘Higher-order nonlinear dispersive equations’, Proc. Amer. Math. Soc. 122(1) (1994), 157–166.Google Scholar | DOI

[35] Kenig, C. E., Ponce, G. and Vega, L., ‘On the ill-posedness of some canonical dispersive equations’, Duke Math. J. 106(3) (2001), 617–633.Google Scholar | DOI

[36] Killip, R., Murphy, J. and Visan, M., ‘Invariance of white noise for KdV on the line’, Invent. Math. 222(1) (2020), 203–282.Google Scholar | DOI

[37] Killip, R. and Vişan, M., ‘KdV is well-posed in ’, Ann. of Math. (2) 190(1) (2019), 249–305.Google Scholar | DOI

[38] Killip, R., Vişan, M. and Zhang, X., ‘Low regularity conservation laws for integrable PDE’, Geom. Funct. Anal. 28(4) (2018), 1062–1090.Google Scholar | DOI

[39] Kishimoto, N., ‘Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity’, Differ. Integral Equ. 22(5–6) (2009), 447–464.Google Scholar

[40] Kishimoto, N., ‘A remark on norm inflation for nonlinear Schrödinger equations’, Commun. Pure Appl. Anal. 18(3) (2019), 1375–1402.Google Scholar | DOI

[41] Koch, H. and Tataru, D., ‘A priori bounds for the 1D cubic NLS in negative Sobolev spaces’, Int. Math. Res. Not. IMRN (16) 2007(9) (2007), Art. ID rnm053, 36.Google Scholar | DOI

[42] Koch, H. and Tataru, D., ‘Energy and local energy bounds for the 1-d cubic NLS equation in ’, Ann. Inst. H. Poincaré Anal. Non Linéaire 29(6) (2012), 955–988.Google Scholar | DOI

[43] Koch, H. and Tataru, D., ‘Conserved energies for the cubic nonlinear Schrödinger equation in one dimension’, Duke Math. J. 167(17) (2018), 3207–3313.Google Scholar | DOI

[44] Kwon, S., Oh, T. and Yoon, H., ‘Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line’, Ann. Fac. Sci. Toulouse Math. (6) 29(3) (2020), 649–720.Google Scholar | DOI

[45] Lax, P. D., ‘Integrals of nonlinear equations of evolution and solitary waves’, Comm. Pure Appl. Math. 21 (1968), 467–490.Google Scholar | DOI

[46] Miura, R. M., ‘Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation’, J. Math. Phys. 9 (1968), 1202–1204.Google Scholar | DOI

[47] Molinet, L., ‘Sharp ill-posedness results for the KdV and mKdV equations on the torus’, Adv. Math. 230(4–6) (2012), 1895–1930.Google Scholar | DOI

[48] Oh, T., ‘A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces’, Funkcial. Ekvac. 60(2) (2017), 259–277.Google Scholar | DOI

[49] Oh, T. and Wang, Y., ‘Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces’, J. Differ. Equ. 269(1) (2020), 612–640.Google Scholar | DOI

[50] Oh, T. and Wang, Y., ‘On global well-posedness of the modified KdV equation in modulation spaces’, Discrete Contin. Dyn. Syst. 41(6) (2021), 2971–2992.Google Scholar | DOI

[51] Riesz, M., ‘Sur les ensembles compacts de fonctions sommables’, Acta Sci. Math. (Szeged) 6 (1933), 136–142.Google Scholar

[52] Schippa, R., ‘On the existence of periodic solutions to the modified Korteweg–de Vries equation below ’, J. Evol. Equ. 20(3) (2020), 725–776.Google Scholar | DOI

[53] Strichartz, R. S., ‘Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations’, Duke Math. J. 44(3) (1977), 705–714.Google Scholar | DOI

[54] Tsutsumi, M., ‘Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive wave equations’, J. Differ. Equ. 42(2) (1981), 260–281.Google Scholar | DOI

[55] Tsutsumi, Y., ‘-solutions for nonlinear Schrödinger equations and nonlinear groups’, Funkcial. Ekvac. 30(1) (1987), 115–125.Google Scholar

[56] Zakharov, V. E. and Shabat, A. B., ‘Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media’, Ž. Èksper. Teoret. Fiz. 61(1) (1971), 118–134.Google Scholar

Cité par Sources :