Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_4,
author = {Benjamin Harrop-Griffiths and Rowan Killip and Monica Vi\c{s}an},
title = {Sharp well-posedness for the cubic {NLS} and {mKdV} in $H^s({{\mathbb {R}}})$},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.4/}
}
TY - JOUR
AU - Benjamin Harrop-Griffiths
AU - Rowan Killip
AU - Monica Vişan
TI - Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$
JO - Forum of Mathematics, Pi
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.4/
DO - 10.1017/fmp.2024.4
LA - en
ID - 10_1017_fmp_2024_4
ER -
%0 Journal Article
%A Benjamin Harrop-Griffiths
%A Rowan Killip
%A Monica Vişan
%T Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.4/
%R 10.1017/fmp.2024.4
%G en
%F 10_1017_fmp_2024_4
Benjamin Harrop-Griffiths; Rowan Killip; Monica Vişan. Sharp well-posedness for the cubic NLS and mKdV in $H^s({{\mathbb {R}}})$. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.4
[1] , , and , ‘The inverse scattering transform-Fourier analysis for nonlinear problems’, Studies in Appl. Math. 53(4) (1974), 249–315.Google Scholar | DOI
[2] , and , ‘The local ill-posedness of the modified KdV equation’, Ann. Inst. H. Poincaré Anal. Non Linéaire 13(4) (1996), 529–535.Google Scholar | DOI
[3] , ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations’, Geom. Funct. Anal. 3(2) (1993), 107–156.Google Scholar | DOI
[4] , ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation’, Geom. Funct. Anal. 3(3) (1993), 209–262.Google Scholar | DOI
[5] , and , ‘Global well-posedness for the fifth-order KdV equation in ’, Ann. PDE 7(2) (2021), Paper No. 21, 46.Google Scholar | DOI
[6] , and , ‘An instability property of the nonlinear Schrödinger equation on ’, Math. Res. Lett. 9(2–3) (2002), 323–335.Google Scholar | DOI
[7] , ‘A remark on the well-posedness of the modified KDV equation in the Fourier-Lebesgue spaces’, Discrete Contin. Dyn. Syst. 41(8) (2021), 3915–3950.Google Scholar | DOI
[8] and , ‘Local well and ill posedness for the modified KdV equations in subcritical modulation spaces’, Commun. Math. Sci. 18(4) (2020), 909–946.Google Scholar | DOI
[9] , ‘Power series solution of a nonlinear Schrödinger equation’, in Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Mathematics Studies, volume 163 (Princeton University Press, Princeton, NJ, 2007), 131–155.Google Scholar
[10] , and , ‘Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations’, Amer. J. Math. 125(6) (2003), 1235–1293.Google Scholar | DOI
[11] , and , ‘Ill-posedness for nonlinear Schrödinger and wave equations’, Preprint, 2003, .Google Scholar | arXiv
[12] , and , ‘Instability of the periodic nonlinear Schrödinger equation’, Preprint, 2003, .Google Scholar | arXiv
[13] , and , ‘A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order’, J. Funct. Anal. 254(2) (2008), 368–395.Google Scholar | DOI
[14] , and , ‘Low regularity a priori bounds for the modified Korteweg-de Vries equation’, Lib. Math. (N.S.) 32(1) (2012), 51–75.Google Scholar
[15] , , , and , ‘Sharp global well-posedness for KdV and modified KdV on and ’, J. Amer. Math. Soc. 16(3) (2003), 705–749.Google Scholar | DOI
[16] and , ‘Hamiltonian methods in the theory of solitons’, in Classics in Mathematics (Springer, Berlin, English edition, 2007), i–594. Translated from the 1986 Russian original by Alexey G. Reyman.Google Scholar
[17] , , and , ‘Method for solving the Korteweg-Devries equation’, Phys. Rev. Lett. 19 (1967), 1095–1097.Google Scholar | DOI
[18] , ‘An improved local well-posedness result for the modified KdV equation’, Int. Math. Res. Not. 2004(61) (2004), 3287–3308.Google Scholar | DOI
[19] , ‘Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS’, Int. Math. Res. Not. 2005(41) (2005), 2525–2558.Google Scholar | DOI
[20] , ‘On the hierarchies of higher order mKdV and KdV equations’, Cent. Eur. J. Math. 8(3) (2010), 500–536.Google Scholar | DOI
[21] and , ‘Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data’, SIAM J. Math. Anal. 39(6) (2008), 1890–1920.Google Scholar | DOI
[22] and , ‘Local well-posedness for the modified KdV equation in almost critical -spaces’, Trans. Amer. Math. Soc. 361(11) (2009), 5681–5694.Google Scholar | DOI
[23] , ‘On the 1D cubic nonlinear Schrödinger equation in an almost critical space’, J. Fourier Anal. Appl. 23(1) (2017), 91–124.Google Scholar | DOI
[24] , ‘Global well-posedness of Korteweg-de Vries equation in ’, J. Math. Pures Appl . (9) 91(6) (2009), 583–597.Google Scholar | DOI
[25] , and , ‘Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS’, Comm. Math. Phys. 322(1) (2013), 19–48.Google Scholar | DOI
[26] and , ‘Non-existence of solutions for the periodic cubic NLS below ’, Int. Math. Res. Not. IMRN 2018(6) (2018), 1656–1729.Google Scholar
[27] , and , ‘Microscopic conservation laws for integrable lattice models’, Monatsh. Math. 196(3) (2021), 477–504.Google Scholar | DOI
[28] and , ‘On the well-posedness of the defocusing mKdV equation below ’, SIAM J. Math. Anal. 49(3) (2017), 2191–2219.Google Scholar | DOI
[29] and , ‘Global well-posedness of mKdV in ’, Commun. Partial Differ. Equ. 30(1–3) (2005), 435–449.Google Scholar | DOI
[30] , ‘On the Cauchy problem for the (generalized) Korteweg–de Vries equation’, in Studies in Applied Mathematics, Advances in Mathematics Supplement Studies, volume 8 (Academic Press, New York, 1983), 93–128.Google Scholar
[31] , ‘On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness’, J. Anal. Math. 67 (1995), 281–306.Google Scholar | DOI
[32] , ‘Correction to: “On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness”’, J. Anal. Math. 68 (1996), 305.Google Scholar | DOI
[33] , and , ‘Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle’, Comm. Pure Appl. Math. 46(4) (1993), 527–620.Google Scholar | DOI
[34] , and , ‘Higher-order nonlinear dispersive equations’, Proc. Amer. Math. Soc. 122(1) (1994), 157–166.Google Scholar | DOI
[35] , and , ‘On the ill-posedness of some canonical dispersive equations’, Duke Math. J. 106(3) (2001), 617–633.Google Scholar | DOI
[36] , and , ‘Invariance of white noise for KdV on the line’, Invent. Math. 222(1) (2020), 203–282.Google Scholar | DOI
[37] and , ‘KdV is well-posed in ’, Ann. of Math. (2) 190(1) (2019), 249–305.Google Scholar | DOI
[38] , and , ‘Low regularity conservation laws for integrable PDE’, Geom. Funct. Anal. 28(4) (2018), 1062–1090.Google Scholar | DOI
[39] , ‘Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity’, Differ. Integral Equ. 22(5–6) (2009), 447–464.Google Scholar
[40] , ‘A remark on norm inflation for nonlinear Schrödinger equations’, Commun. Pure Appl. Anal. 18(3) (2019), 1375–1402.Google Scholar | DOI
[41] and , ‘A priori bounds for the 1D cubic NLS in negative Sobolev spaces’, Int. Math. Res. Not. IMRN (16) 2007(9) (2007), Art. ID rnm053, 36.Google Scholar | DOI
[42] and , ‘Energy and local energy bounds for the 1-d cubic NLS equation in ’, Ann. Inst. H. Poincaré Anal. Non Linéaire 29(6) (2012), 955–988.Google Scholar | DOI
[43] and , ‘Conserved energies for the cubic nonlinear Schrödinger equation in one dimension’, Duke Math. J. 167(17) (2018), 3207–3313.Google Scholar | DOI
[44] , and , ‘Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line’, Ann. Fac. Sci. Toulouse Math. (6) 29(3) (2020), 649–720.Google Scholar | DOI
[45] , ‘Integrals of nonlinear equations of evolution and solitary waves’, Comm. Pure Appl. Math. 21 (1968), 467–490.Google Scholar | DOI
[46] , ‘Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation’, J. Math. Phys. 9 (1968), 1202–1204.Google Scholar | DOI
[47] , ‘Sharp ill-posedness results for the KdV and mKdV equations on the torus’, Adv. Math. 230(4–6) (2012), 1895–1930.Google Scholar | DOI
[48] , ‘A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces’, Funkcial. Ekvac. 60(2) (2017), 259–277.Google Scholar | DOI
[49] and , ‘Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces’, J. Differ. Equ. 269(1) (2020), 612–640.Google Scholar | DOI
[50] and , ‘On global well-posedness of the modified KdV equation in modulation spaces’, Discrete Contin. Dyn. Syst. 41(6) (2021), 2971–2992.Google Scholar | DOI
[51] , ‘Sur les ensembles compacts de fonctions sommables’, Acta Sci. Math. (Szeged) 6 (1933), 136–142.Google Scholar
[52] , ‘On the existence of periodic solutions to the modified Korteweg–de Vries equation below ’, J. Evol. Equ. 20(3) (2020), 725–776.Google Scholar | DOI
[53] , ‘Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations’, Duke Math. J. 44(3) (1977), 705–714.Google Scholar | DOI
[54] , ‘Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive wave equations’, J. Differ. Equ. 42(2) (1981), 260–281.Google Scholar | DOI
[55] , ‘-solutions for nonlinear Schrödinger equations and nonlinear groups’, Funkcial. Ekvac. 30(1) (1987), 115–125.Google Scholar
[56] and , ‘Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media’, Ž. Èksper. Teoret. Fiz. 61(1) (1971), 118–134.Google Scholar
Cité par Sources :