Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_26,
author = {Hokuto Konno},
title = {The homology of moduli spaces of 4-manifolds may be infinitely generated},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.26},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.26/}
}
Hokuto Konno. The homology of moduli spaces of 4-manifolds may be infinitely generated. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.26
[1] and , ‘Families of diffeomorphisms, embeddings, and positive scalar curvature metrics via Seiberg-Witten theory’, in preparation.Google Scholar
[2] , ‘Smoothly knotted surfaces that remain distinct after many internal stabilizations’, Preprint, 2023, .Google Scholar | arXiv
[3] , ‘Non-trivial smooth families of K3 surfaces’, Math. Ann. 387(3–4) (2023), 1719–1744.Google Scholar | DOI
[4] , ‘On the mapping class groups of simply-connected smooth 4-manifolds’, Preprint, .Google Scholar | arXiv
[5] and , ‘A gluing formula for families Seiberg-Witten invariants’, Geom. Topol. 24(3) (2020), 1381–1456.Google Scholar | DOI
[6] , and , ‘Moduli spaces of 3-manifolds with boundary are finite’, Preprint, 2024, .Google Scholar | arXiv
[7] and , ‘Knotted 3-balls in s 4’, Preprint, 2021, .Google Scholar | arXiv
[8] and , ‘On the automorphism groups of hyperbolic manifolds’, Preprint, 2023, .Google Scholar | arXiv
[9] , and , ‘Finiteness properties of automorphism spaces of manifolds with finite fundamental group’, Math. Ann. 388(4) (2024), 3321–3371.Google ScholarPubMed | DOI
[10] , ‘La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie’, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173.Google Scholar | DOI
[11] and , ‘Generalised Miller-Morita-Mumford classes for block bundles and topological bundles’, Algebr. Geom. Topol. 14(2) (2014), 1181–1204.Google Scholar | DOI
[12] and , ‘Rational blowdowns of smooth 4-manifolds’, J. Differential Geom. 46(2) (1997), 181–235.Google Scholar | DOI
[13] and , ‘Six lectures on four 4-manifolds’, in Low Dimensional Topology (IAS/Park City Math. Ser.) vol. 15 (Amer. Math. Soc., Providence, RI, 2009), 265–315.Google Scholar | DOI
[14] and , ‘Homological stability for moduli spaces of high dimensional manifolds. I’, J. Amer. Math. Soc. 31(1) (2018), 215–264.Google Scholar | DOI
[15] , ‘Sums of elliptic surfaces’, J. Differential Geom. 34(1) (1991), 93–114.Google Scholar | DOI
[16] , ‘Stability of the homology of the mapping class groups of orientable surfaces’, Ann. of Math. (2) 121(2) (1985), 215–249.Google Scholar | DOI
[17] and , ‘A presentation for the mapping class group of a closed orientable surface’, Topology 19(3) (1980), 221–237.Google Scholar | DOI
[18] , ‘Concordance spaces, higher simple-homotopy theory, and applications’, in Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 (Proc. Sympos. Pure Math.) vol. XXXII (Amer. Math. Soc., Providence, RI, 1978), 3–21.Google Scholar | DOI
[19] , ‘Characteristic classes via 4-dimensional gauge theory’, Geom. Topol. 25(2) (2021), 711–773.Google Scholar | DOI
[20] and , ‘Homological instability for moduli spaces of smooth 4-manifolds’, Preprint, 2022, .Google Scholar | arXiv
[21] and , ‘Mapping class groups of simply connected high-dimensional manifolds need not be arithmetic’, C. R. Math. Acad. Sci. Paris 358(4) (2020), 469–473.Google Scholar | DOI
[22] , ‘Some finiteness results for groups of automorphisms of manifolds’, Geom. Topol. 23(5) (2019), 2277–2333.Google Scholar | DOI
[23] and , ‘Family Seiberg-Witten invariants and wall crossing formulas’, Comm. Anal. Geom. 9(4) (2001), 777–823.Google Scholar | DOI
[24] , ‘The family Seiberg-Witten invariant and nonsymplectic loops of diffeomorphisms’, Preprint, 2022, .Google Scholar | arXiv
[25] and , ‘Configuration space integrals and formal smooth structures’, Preprint, 2023, .Google Scholar | arXiv
[26] and , ‘The genus 2 Torelli group is not finitely generated’, Topology Appl. 22(1) (1986), 43–49.Google Scholar | DOI
[27] , The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds (Mathematical Notes) vol. 44 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
[28] , ‘Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique’, Topology 25(4) (1986), 381–397.Google Scholar | DOI
[29] , ‘Isotopy of 4-manifolds’, J. Differential Geom. 24(3) (1986), 343–372.Google Scholar | DOI
[30] , ‘An obstruction to smooth isotopy in dimension 4’, Math. Res. Lett. 5(6) (1998), 743–758.Google Scholar | DOI
[31] , ‘A polynomial invariant of diffeomorphisms of 4-manifolds’, in Proceedings of the Kirbyfest (Berkeley, CA, 1998) (Geom. Topol. Monogr.) vol. 2 (Geom. Topol. Publ., Coventry, 1999), 473–488.Google Scholar
[32] , ‘Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants’, Geom. Topol. 5 (2001), 895–924.Google Scholar | DOI
[33] , ‘Infinitesimal computations in topology’, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331.Google Scholar | DOI
[34] , ‘On the orthogonal groups of unimodular quadratic forms’, Math. Ann. 147 (1962), 328–338.Google Scholar | DOI
[35] , ‘Diffeomorphisms of 4-manifolds’, J. London Math. Soc. 39 (1964), 131–140.Google Scholar | DOI
[36] , ‘Theta-graph and diffeomorphisms of some 4-manifolds’, Preprint, 2023, .Google Scholar | arXiv
Cité par Sources :