The homology of moduli spaces of 4-manifolds may be infinitely generated
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

For a simply-connected closed manifold X of $\dim X \neq 4$, the mapping class group $\pi _0(\mathrm {Diff}(X))$ is known to be finitely generated. We prove that analogous finite generation fails in dimension 4. Namely, we show that there exist simply-connected closed smooth 4-manifolds whose mapping class groups are not finitely generated. More generally, for each $k>0$, we prove that there are simply-connected closed smooth 4-manifolds X for which $H_k(B\mathrm {Diff}(X);\mathbb {Z})$ are not finitely generated. The infinitely generated subgroup of $H_k(B\mathrm {Diff}(X);\mathbb {Z})$ which we detect are topologically trivial, and unstable under the connected sum of $S^2 \times S^2$. These results are proven by constructing and computing an infinite family of characteristic classes using Seiberg–Witten theory.
@article{10_1017_fmp_2024_26,
     author = {Hokuto Konno},
     title = {The homology of moduli spaces of 4-manifolds may be infinitely generated},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.26/}
}
TY  - JOUR
AU  - Hokuto Konno
TI  - The homology of moduli spaces of 4-manifolds may be infinitely generated
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.26/
DO  - 10.1017/fmp.2024.26
LA  - en
ID  - 10_1017_fmp_2024_26
ER  - 
%0 Journal Article
%A Hokuto Konno
%T The homology of moduli spaces of 4-manifolds may be infinitely generated
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.26/
%R 10.1017/fmp.2024.26
%G en
%F 10_1017_fmp_2024_26
Hokuto Konno. The homology of moduli spaces of 4-manifolds may be infinitely generated. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.26

[1] Auckly, D. and Ruberman, D., ‘Families of diffeomorphisms, embeddings, and positive scalar curvature metrics via Seiberg-Witten theory’, in preparation.Google Scholar

[2] Auckly, D., ‘Smoothly knotted surfaces that remain distinct after many internal stabilizations’, Preprint, 2023, .Google Scholar | arXiv

[3] Baraglia, D., ‘Non-trivial smooth families of K3 surfaces’, Math. Ann. 387(3–4) (2023), 1719–1744.Google Scholar | DOI

[4] Baraglia, D., ‘On the mapping class groups of simply-connected smooth 4-manifolds’, Preprint, .Google Scholar | arXiv

[5] Baraglia, D. and Konno, H., ‘A gluing formula for families Seiberg-Witten invariants’, Geom. Topol. 24(3) (2020), 1381–1456.Google Scholar | DOI

[6] Boyd, R., Bregman, C. and Steinebrunner, J., ‘Moduli spaces of 3-manifolds with boundary are finite’, Preprint, 2024, .Google Scholar | arXiv

[7] Budney, R. and Gabai, D., ‘Knotted 3-balls in s 4’, Preprint, 2021, .Google Scholar | arXiv

[8] Budney, R. and Gabai, D., ‘On the automorphism groups of hyperbolic manifolds’, Preprint, 2023, .Google Scholar | arXiv

[9] Bustamante, M., Krannich, M. and Kupers, A., ‘Finiteness properties of automorphism spaces of manifolds with finite fundamental group’, Math. Ann. 388(4) (2024), 3321–3371.Google ScholarPubMed | DOI

[10] Cerf, J., ‘La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie’, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173.Google Scholar | DOI

[11] Ebert, J. and Randal-Williams, O., ‘Generalised Miller-Morita-Mumford classes for block bundles and topological bundles’, Algebr. Geom. Topol. 14(2) (2014), 1181–1204.Google Scholar | DOI

[12] Fintushel, R. and Stern, R. J., ‘Rational blowdowns of smooth 4-manifolds’, J. Differential Geom. 46(2) (1997), 181–235.Google Scholar | DOI

[13] Fintushel, R. and Stern, R. J., ‘Six lectures on four 4-manifolds’, in Low Dimensional Topology (IAS/Park City Math. Ser.) vol. 15 (Amer. Math. Soc., Providence, RI, 2009), 265–315.Google Scholar | DOI

[14] Galatius, S. and Randal-Williams, O., ‘Homological stability for moduli spaces of high dimensional manifolds. I’, J. Amer. Math. Soc. 31(1) (2018), 215–264.Google Scholar | DOI

[15] Gompf, R. E., ‘Sums of elliptic surfaces’, J. Differential Geom. 34(1) (1991), 93–114.Google Scholar | DOI

[16] Harer, J. L., ‘Stability of the homology of the mapping class groups of orientable surfaces’, Ann. of Math. (2) 121(2) (1985), 215–249.Google Scholar | DOI

[17] Hatcher, A. and Thurston, W., ‘A presentation for the mapping class group of a closed orientable surface’, Topology 19(3) (1980), 221–237.Google Scholar | DOI

[18] Hatcher, A. E., ‘Concordance spaces, higher simple-homotopy theory, and applications’, in Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 (Proc. Sympos. Pure Math.) vol. XXXII (Amer. Math. Soc., Providence, RI, 1978), 3–21.Google Scholar | DOI

[19] Konno, H., ‘Characteristic classes via 4-dimensional gauge theory’, Geom. Topol. 25(2) (2021), 711–773.Google Scholar | DOI

[20] Konno, H. and Lin, J., ‘Homological instability for moduli spaces of smooth 4-manifolds’, Preprint, 2022, .Google Scholar | arXiv

[21] Krannich, M. and Randal-Williams, O., ‘Mapping class groups of simply connected high-dimensional manifolds need not be arithmetic’, C. R. Math. Acad. Sci. Paris 358(4) (2020), 469–473.Google Scholar | DOI

[22] Kupers, A., ‘Some finiteness results for groups of automorphisms of manifolds’, Geom. Topol. 23(5) (2019), 2277–2333.Google Scholar | DOI

[23] Li, T.-J. and Liu, A.-K., ‘Family Seiberg-Witten invariants and wall crossing formulas’, Comm. Anal. Geom. 9(4) (2001), 777–823.Google Scholar | DOI

[24] Lin, J., ‘The family Seiberg-Witten invariant and nonsymplectic loops of diffeomorphisms’, Preprint, 2022, .Google Scholar | arXiv

[25] Lin, J. and Xie, Y., ‘Configuration space integrals and formal smooth structures’, Preprint, 2023, .Google Scholar | arXiv

[26] Mccullough, D. and Miller, A., ‘The genus 2 Torelli group is not finitely generated’, Topology Appl. 22(1) (1986), 43–49.Google Scholar | DOI

[27] Morgan, J. W., The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds (Mathematical Notes) vol. 44 (Princeton University Press, Princeton, NJ, 1996).Google Scholar

[28] Perron, B., ‘Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique’, Topology 25(4) (1986), 381–397.Google Scholar | DOI

[29] Quinn, F., ‘Isotopy of 4-manifolds’, J. Differential Geom. 24(3) (1986), 343–372.Google Scholar | DOI

[30] Ruberman, D., ‘An obstruction to smooth isotopy in dimension 4’, Math. Res. Lett. 5(6) (1998), 743–758.Google Scholar | DOI

[31] Ruberman, D., ‘A polynomial invariant of diffeomorphisms of 4-manifolds’, in Proceedings of the Kirbyfest (Berkeley, CA, 1998) (Geom. Topol. Monogr.) vol. 2 (Geom. Topol. Publ., Coventry, 1999), 473–488.Google Scholar

[32] Ruberman, D., ‘Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants’, Geom. Topol. 5 (2001), 895–924.Google Scholar | DOI

[33] Sullivan, D., ‘Infinitesimal computations in topology’, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331.Google Scholar | DOI

[34] Wall, C. T. C., ‘On the orthogonal groups of unimodular quadratic forms’, Math. Ann. 147 (1962), 328–338.Google Scholar | DOI

[35] Wall, C. T. C., ‘Diffeomorphisms of 4-manifolds’, J. London Math. Soc. 39 (1964), 131–140.Google Scholar | DOI

[36] Watanabe, T., ‘Theta-graph and diffeomorphisms of some 4-manifolds’, Preprint, 2023, .Google Scholar | arXiv

Cité par Sources :