Extensions of tautological rings and motivic structures in the cohomology of ${\overline {\mathcal {M}}}_{g,n}$
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We study collections of subrings of $H^*({\overline {\mathcal {M}}}_{g,n})$ that are closed under the tautological operations that map cohomology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flexible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for the $\ell $-adic Galois representations and Hodge structures that appear in $H^k({\overline {\mathcal {M}}}_{g,n})$ for $k = 13$, $14$ and $15$. We also show that $H^4({\overline {\mathcal {M}}}_{g,n})$ is generated by tautological classes for all g and n, confirming a prediction of Arbarello and Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of ${\mathcal {M}}_{7,n}$ is generated by algebraic cycle classes, for $n \leq 3$.
@article{10_1017_fmp_2024_24,
     author = {Samir Canning and Hannah Larson and Sam Payne},
     title = {Extensions of tautological rings and motivic structures in the cohomology of ${\overline {\mathcal {M}}}_{g,n}$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.24/}
}
TY  - JOUR
AU  - Samir Canning
AU  - Hannah Larson
AU  - Sam Payne
TI  - Extensions of tautological rings and motivic structures in the cohomology of ${\overline {\mathcal {M}}}_{g,n}$
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.24/
DO  - 10.1017/fmp.2024.24
LA  - en
ID  - 10_1017_fmp_2024_24
ER  - 
%0 Journal Article
%A Samir Canning
%A Hannah Larson
%A Sam Payne
%T Extensions of tautological rings and motivic structures in the cohomology of ${\overline {\mathcal {M}}}_{g,n}$
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.24/
%R 10.1017/fmp.2024.24
%G en
%F 10_1017_fmp_2024_24
Samir Canning; Hannah Larson; Sam Payne. Extensions of tautological rings and motivic structures in the cohomology of ${\overline {\mathcal {M}}}_{g,n}$. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.24

[1] Arbarello, E. and Cornalba, M., ‘Calculating cohomology groups of moduli spaces of curves via algebraic geometry’, Inst. Hautes Études Sci. Publ. Math. (88) (1998), 97–127. MR 1733327Google Scholar | DOI

[2] Bergström, J., ‘Cohomology of moduli spaces of curves’, (2024). https://github.com/jonasbergstroem/Cohomology-of-moduli-spaces-of-curves.Google Scholar

[3] Bergström, J. and Faber, C., ‘Cohomology of moduli spaces via a result of Chenevier and Lannes’, Épijournal Géom. Algébrique 7 (2023), Article No. 20.Google Scholar

[4] Bergström, J., Faber, C. and Payne, S., ‘Polynomial point counts and odd cohomology vanishing on moduli spaces of stable curves’, Ann. Math. (2) 199(3) (2024), 1323–1365. MR 4740541Google Scholar | DOI

[5] Canning, S. and Larson, H., ‘On the Chow and cohomology rings of moduli spaces of stable curves’, Preprint, 2022, . To appear in J. Eur. Math. Soc.Google Scholar | arXiv

[6] Canning, S. and Larson, H., ‘The Chow rings of the moduli spaces of curves of genus 7, 8, and 9’, J. Algebraic Geom. 33(1) (2024), 55–116. MR 4693574Google Scholar | DOI

[7] Canning, S. and Larson, H., ‘Tautological classes on low-degree Hurwitz spaces’, Int. Math. Res. Not. IMRN (1) (2024), 1–46. MR 4686645Google Scholar | DOI

[8] Canning, S., Larson, H. and Payne, S., ‘The eleventh cohomology group of ’, Forum Math. Sigma 11 (2023), no. e62.Google Scholar | DOI

[9] Casnati, G. and Ekedahl, T., ‘Covers of algebraic varieties I. A general structure theorem, covers of degree and Enriques surfaces’, J. Algebraic Geom. 5(3) (1996), 439–460. MR 1382731Google Scholar

[10] Chenevier, G. and Lannes, J., ‘Automorphic forms and even unimodular lattices’, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 69 (Springer, Cham, 2019), i–417. MR 3929692Google Scholar

[11] Delecroix, V., Schmitt, J. and Van Zelm, J., ‘admcycles—a Sage package for calculations in the tautological ring of the moduli space of stable curves’, J. Softw. Algebra Geom. 11(1) (2021), 89–112. MR 4387186Google Scholar | DOI

[12] Deligne, P., ‘Théorème de Lefschetz et critères de dégénérescence de suites spectrales’, Inst. Hautes Études Sci. Publ. Math. (35) (1968), 259–278. MR 244265Google Scholar | DOI

[13] Faber, C. and Pandharipande, R., ‘Tautological and non-tautological cohomology of the moduli space of curves’, in Handbook of Moduli. Vol. I, Advanced Lectures in Mathematics (ALM), vol. 24 (International Press, Somerville, MA, 2013), 293–330. MR 3184167Google Scholar

[14] Field, R., ‘The Chow ring of the classifying space ’, J. Algebra 350 (2012), 330–339. MR 2859891Google Scholar | DOI

[15] Fontanari, C., ‘Holomorphic differential forms on moduli spaces of stable curves’, Geom. Dedicata 218(1) (2024), Paper No. 4. MR 4659429Google Scholar | DOI

[16] Getzler, E., ‘The semi-classical approximation for modular operads’, Comm. Math. Phys. 194(2) (1998), 481–492. MR 1627677Google Scholar | DOI

[17] Graber, T. and Pandharipande, R., ‘Constructions of nontautological classes on moduli spaces of curves’, Michigan Math. J. 51(1) (2003), 93–109. MR 1960923Google Scholar | DOI

[18] Keel, S., ‘Intersection theory of moduli space of stable -pointed curves of genus zero’, Trans. Amer. Math. Soc. 330(2) (1992), 545–574. MR 1034665Google Scholar

[19] Kresch, A. and Tamvakis, H., ‘Quantum cohomology of orthogonal Grassmannians’, Compos. Math. 140(2) (2004), 482–500. MR 2027200Google Scholar | DOI

[20] Laterveer, R., ‘Surjectivity of cycle maps for singular varieties’, Geom. Dedicata 179 (2015), 265–278. MR 3424670Google Scholar | DOI

[21] Mukai, S., ‘Curves and symmetric spaces, I’, Am. J. Math. 117(6) (1995), 1627–1644. MR 1363081Google Scholar | DOI

[22] R. Pandharipande, A. Pixton and D. Zvonkine, ‘Relations on via -spin structures’, J. Am. Math. Soc. 28(1) (2015), 279–309. MR 3264769Google Scholar

[23] Pandharipande, R., Zvonkine, D. and Petersen, D., ‘Cohomological field theories with non-tautological classes’, Ark. Mat. 57(1) (2019), 191–213. MR 3951280Google Scholar | DOI

[24] Payne, S. and Willwacher, T., ‘Weight two compactly supported cohomology of moduli spaces of curves’, Preprint, 2021, . To appear in Duke Math. J. Google Scholar | arXiv

[25] Payne, S. and Willwacher, T., ‘Weight 11 compactly supported cohomology of moduli spaces of curves’, Int. Math. Res. Not. IMRN (8) (2024), 7060–7098. MR 4735654Google Scholar | DOI

[26] Petersen, D., ‘The structure of the tautological ring in genus one’, Duke Math. J. 163(4) (2014), 777–793. MR 3178432Google Scholar | DOI

[27] Petersen, D., ‘Cohomology of local systems on the moduli of principally polarized abelian surfaces’, Pacific J. Math. 275(1) (2015), 39–61. MR 3336928Google Scholar | DOI

[28] Petersen, D., ‘Tautological rings of spaces of pointed genus two curves of compact type’, Compos. Math. 152(7) (2016), 1398–1420. MR 3530445Google Scholar | DOI

[29] Petersen, D., Tavakol, M. and Yin, Q., ‘Tautological classes with twisted coefficients’, Ann. Sci. Éc. Norm. Supér. (4) 54(5) (2021), 1179–1236. MR 4363247Google Scholar | DOI

[30] Petersen, D. and Tommasi, O., ‘The Gorenstein conjecture fails for the tautological ring of ’, Invent. Math. 196(1) (2014), 139–161. MR 3179574Google Scholar | DOI

[31] Pixton, A., ‘The tautological ring of the moduli space of curves’, ProQuest LLC, Ann Arbor, MI, 2013, Thesis (Ph.D.)–Princeton University. MR 3153424Google Scholar

[32] Polito, M., ‘The fourth tautological group of and relations with the cohomology’, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14(2) (2003), 137–168. MR 2053662Google Scholar

[33] Totaro, B., ‘Chow groups, Chow cohomology, and linear varieties’, Forum Math. Sigma 2 (2014), Paper No. e17, 25. MR 3264256Google Scholar | DOI

[34] Totaro, B., ‘The motive of a classifying space’, Geom. Topol. 20(4) (2016), 2079–2133. MR 3548464Google Scholar | DOI

[35] Wahl, N., ‘Homological stability for mapping class groups of surfaces’, in Handbook of Moduli. Vol. III, Advanced Lectures in Mathematics (ALM), vol. 26 (International Press, Somerville, MA, 2013), 547–583. MR 3135444Google Scholar

Cité par Sources :