Mod p points on shimura varieties of parahoric level
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the $\overline {\mathbb {F}}_{p}$-points of the Kisin–Pappas integral models of Shimura varieties of Hodge type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point, proving a conjecture of Kisin–Madapusi–Shin. We, furthermore, show that the mod p isogeny classes are of the form predicted by the Langlands–Rapoport conjecture (cf. Conjecture 9.2 of [Rap05]) if either the Shimura variety is proper or if the group at p is unramified. The main ingredient in our work is a global argument that allows us to reduce the conjecture to the case of very special parahoric level. This case is dealt with in the Appendix by Zhou. As a corollary to our arguments, we determine the connected components of Ekedahl–Oort strata.
@article{10_1017_fmp_2024_22,
     author = {Pol van Hoften},
     title = {Mod p points on shimura varieties of parahoric level},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.22/}
}
TY  - JOUR
AU  - Pol van Hoften
TI  - Mod p points on shimura varieties of parahoric level
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.22/
DO  - 10.1017/fmp.2024.22
LA  - en
ID  - 10_1017_fmp_2024_22
ER  - 
%0 Journal Article
%A Pol van Hoften
%T Mod p points on shimura varieties of parahoric level
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.22/
%R 10.1017/fmp.2024.22
%G en
%F 10_1017_fmp_2024_22
Pol van Hoften. Mod p points on shimura varieties of parahoric level. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.22

[And21] Andreatta, F., ‘On two mod p period maps: Ekedahl–Oort and fine Deligne–Lusztig stratifications’, Preprint, 2021, .Google Scholar | arXiv | DOI

[BGA18] Bertapelle, A. and González-Avilés, C. D., ‘On the perfection of schemes’, Expo. Math. 36(2) (2018), 197–220. MR 3810441Google Scholar | DOI

[Bor98] Borovoi, M., ‘Abelian Galois cohomology of reductive groups’, Mem. Am. Math. Soc. 132(616) (1998), viii+50.Google Scholar

[Bor20] Borovoi, M., ‘Quotienting by and inner forms’, MathOverflow, 2020. https://mathoverflow.net/q/355287 (version: 2020-03-20).Google Scholar

[BS15] Bhatt, B. and Scholze, P., ‘The pro-étale topology for schemes’, Astérisque (369) (2015), 99–201.Google Scholar

[BS17] Bhatt, B. and Scholze, P., ‘Projectivity of the Witt vector affine Grassmannian’, Invent. Math. 209(2) (2017), 329–423.Google Scholar | DOI

[BT84] Bruhat, F. and Tits, J., ‘Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée’, Inst. Hautes Études Sci. Publ. Math. (60) (1984), 197–376.Google Scholar

[CKV15] Chen, M., Kisin, M. and Viehmann, E., ‘Connected components of affine Deligne-Lusztig varieties in mixed characteristic’, Compos. Math. 151(9) (2015), 1697–1762.Google Scholar | DOI

[Del79] Deligne, P., ‘Variétés de Shimura: Interprétation modulaire, et techniques de construction de modèles canoniques’, in Automorphic forms, representations and -functions, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 247–289.Google Scholar

[DvHKZ24] Daniels, P., Van Hoften, P., Kim, D. and Zhang, M., ‘Igusa stacks and the cohomology of Shimura varieties’, Preprint, 2024, .Google Scholar | arXiv

[EvdG09] Ekedahl, T. and Van Der Geer, G., ‘Cycle classes of the E-O stratification on the moduli of abelian varieties’, in Algebra, arithmetic, and geometry : In honor of Yu. I. Manin, Vol. I, Progress in Mathematics, vol. 269 (Birkhäuser, Boston, MA, 2009), 567–636.Google Scholar | DOI

[FS21] Fargues, L. and Scholze, P., ‘Geometrization of the local Langlands correspondence’, Preprint, 2021, .Google Scholar | arXiv

[GL22] Gleason, I. and Lourenço, J., ‘On the connectedness of -adic period domains’, Preprint, 2022, .Google Scholar | arXiv

[GLX22] Gleason, I., Lim, D. G. and Xu, Y., ‘The connected components of affine Deligne–Lusztig varieties’, Preprint, 2022, .Google Scholar | arXiv

[Hai14] Haines, T. J., ‘The stable Bernstein center and test functions for Shimura varieties, automorphic forms and Galois representations. Vol. 2’, in London Mathematical Society Lecture Note Series, vol. 415 (Cambridge University Press, Cambridge, 2014), 118–186.Google Scholar

[He14] He, X., ‘Geometric and homological properties of affine Deligne-Lusztig varieties’, Ann. Math. (2) 179(1) (2014), 367–404.Google Scholar | DOI

[He16] He, X., ‘Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties’, Ann. Sci. Éc. Norm. Supér. (4) 49(5) (2016), 1125–1141.Google Scholar | DOI

[Hes20] Hesse, J., ‘Central leaves on Shimura varieties with parahoric reduction’, Preprint, 2020, .Google Scholar | arXiv

[HK19] Hamacher, P. and Kim, W., ‘-adic étale cohomology of Shimura varieties of Hodge type with non-trivial coefficients’, Math. Ann. 375(3–4) (2019), 973–1044.Google Scholar | DOI

[Hof23] Hoff, M., ‘On parahoric -displays’, Preprint, 2023, .Google Scholar | arXiv

[vanHX24] Van Hoften, P. and Xiao, L. X., ‘Monodromy and irreducibility of Igusa varieties’, Preprint, 2023, . Am. J. Math., to appear (2024).Google Scholar | arXiv

[HR17] He, X. and Rapoport, M., ‘Stratifications in the reduction of Shimura varieties’, Manuscr. Math. 152(3–4) (2017), 317–343.Google Scholar | DOI

[HR21] Haines, T. J. and Richarz, T., ‘The test function conjecture for parahoric local models’, J. Am. Math. Soc. 34(1) (2021), 135–218.Google Scholar | DOI

[HV18] Hamacher, P. and Viehmann, E., ‘Irreducible components of minuscule affine Deligne-Lusztig varieties’, Algebra Number Theory 12(7) (2018), 1611–1634.Google Scholar | DOI

[HZ20] He, X. and Zhou, R., ‘On the connected components of affine Deligne–Lusztig varieties’, Duke Math. J. 169(14) (2020), 2697–2765.Google Scholar | DOI

[HZZ21] He, X., Zhou, R. and Zhu, Y., ‘Stabilizers of irreducible components of affine Deligne–Lusztig varieties’, Preprint, 2021, .Google Scholar | arXiv | DOI

[Kis10] Kisin, M., ‘Integral models for Shimura varieties of abelian type’, J. Am. Math. Soc. 23(4) (2010), 967–1012.Google Scholar | DOI

[Kis17] Kisin, M., ‘Points on Shimura varieties of abelian type’, J. Am. Math. Soc. 30(3) (2017), 819–914.Google Scholar | DOI

[KMPS22] Kisin, M., Pera, K. M. and Shin, S. W., ‘Honda-Tate theory for Shimura varieties’, Duke Math. J. 171(7) (2022), 1559–1614. MR 4484214Google Scholar | DOI

[Kot97] Kottwitz, R. E., ‘Isocrystals with additional structure. II’, Compos. Math. 109(3) (1997), 255–339.Google Scholar | DOI

[KP18] Kisin, M. and Pappas, G., ‘Integral models of Shimura varieties with parahoric level structure’, Publ. Math. IHÉS. 128 (2018), 121–218.Google Scholar | DOI

[KP23] Kaletha, T. and Prasad, G., ‘Bruhat-Tits theory—a new approach’, in New Mathematical Monographs, vol. 44 (Cambridge University Press, Cambridge, 2023), 1–700. MR 4520154Google Scholar

[KS21] Kret, A. and Shin, S. W., of Igusa varieties via automorphic forms’, Preprint, 2021, .Google Scholar | arXiv

[KSZ21] Kisin, M., Shin, S. W. and Zhu, Y., ‘The stable trace formula for Shimura varieties of abelian type’, Preprint, 2021, .Google Scholar | arXiv

[Lan76] Langlands, R. P., ‘Some contemporary problems with origins in the Jugendtraum’, in Mathematical developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics, Vol. XXVIII (Northern Illinois University, De Kalb, IL, 1974, 1976), 401–418.Google Scholar

[Lan77] Langlands, R. P., ‘Shimura varieties and the Selberg trace formula’, Can. J. Math. 29(6) (1977), 1292–1299.Google Scholar | DOI

[Lau18] Lau, E., ‘Dieudonné theory over semiperfect rings and perfectoid rings’, Compos. Math. 154(9) (2018), 1974–2004. MR 3867290Google Scholar | DOI

[LR87] Langlands, R. P. and Rapoport, M., ‘Shimuravarietäten und Gerben’, J. Reine Angew. Math. 378 (1987), 113–220.Google Scholar

[Lus83] Lusztig, G., ‘Singularities, character formulas, and a -analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981)’, Astérisque 101 (1983), 208–229.Google Scholar

[Mao24] Mao, S., ‘Compactifications of closed subschemes of integral models of Hodge-type Shimura varieties with parahoric level structures’, 2024. https://conservancy.umn.edu/items/75ae418d-fcaf-4e74-8f8b-13c96b9abd31.Google Scholar

[Mil92] Milne, J. S., ‘ The points on a Shimura variety modulo a prime of good reduction. The zeta functions of Picard modular surfaces ’ (University of Montréal, Montreal, QC, 1992), 151–253. https://www.jmilne.org/math/articles/1992aP.pdf.Google Scholar

[Mil05] Milne, J. S., ‘Introduction to Shimura varieties’, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Mathematics Proceedings, vol. 4 (American Mathematical Society, Providence, RI, 2005), 265–378.Google Scholar

[MP19] Pera, K. M., ‘Toroidal compactifications of integral models of Shimura varieties of Hodge type’, Ann. Sci. Éc. Norm. Supér. (4) 52(2) (2019), 393–514.Google Scholar | DOI

[Nie18] Nie, S., ‘Connected components of closed affine Deligne-Lusztig varieties in affine Grassmannians’, Am. J. Math. 140(5) (2018), 1357–1397.Google Scholar | DOI

[Nie21] Nie, S., ‘Connectedness of affine Deligne-Lusztig varieties for unramified groups’, Preprint, 2021, .Google Scholar | arXiv

[Pap22] Pappas, G., ‘On integral models of Shimura varieties’, Math. Ann. 385 (2022), 1–61.Google Scholar | DOI

[PR94] Platonov, V. and Rapinchuk, A., ‘Algebraic groups and number theory’, in Pure and Applied Mathematics, vol. 139 (Academic Press, Inc., Boston, MA, 1994), 1–614. Translated from the 1991 Russian original by Rachel Rowen.Google Scholar

[PR08] Pappas, G. and Rapoport, M., ‘Twisted loop groups and their affine flag varieties’, Adv. Math. 219(1) (2008), 118–198. With an appendix by T. Haines and Rapoport.Google Scholar | DOI

[PR21] Pappas, G. and Rapoport, M., ‘p-adic shtukas and the theory of global and local Shimura varieties’, Preprint, 2021, .Google Scholar | arXiv

[Rap05] Rapoport, M., ‘A guide to the reduction modulo of Shimura varieties’, Preprint, 2002, .Google Scholar | arXiv

[Rei97] Reimann, H., ‘The semi-simple zeta function of quaternionic Shimura varieties’, in Lecture Notes in Mathematics, vol. 1657 (Springer-Verlag, Berlin, 1997), i–144.Google Scholar

[RR96] Rapoport, M. and Richartz, M., ‘On the classification and specialization of -isocrystals with additional structure’, Compos. Math. 103(2) (1996), 153–181.Google Scholar

[RV14] Rapoport, M. and Viehmann, E., ‘Towards a theory of local Shimura varieties’, Münst. J. Math. 7(1) (2014), 273–326.Google Scholar

[RZ96] Rapoport, M. and Zink, T., ‘Period spaces for -divisible groups’, in Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996), 1–353.Google Scholar

[Sta23] The Stacks project authors, ‘The stacks project’, (2023). https://stacks.math.columbia.edu, 2023.Google Scholar

[SYZ21] Shen, X., Yu, C.-F. and Zhang, C., ‘EKOR strata for Shimura varieties with parahoric level structure’, Duke Math. J. 170(14) (2021), 3111–3236.Google Scholar | DOI

[SYZ24] Shen, X., Yu, C.-F. and Zhang, C., ‘Errata for “EKOR strata for Shimura varieties with parahoric level structure”’, 2024. Available at http://www.mcm.ac.cn/people/members/202012/W020240221388397838609.pdf.Google Scholar

[Tit79] Tits, J., ‘Reductive groups over local fields’, in Automorphic forms, representations and -functions, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 29–69.Google Scholar

[Vak24] Vakil, R., ‘The rising sea, foundations of algebraic geometry’, 2024. https://math.stanford.edu/~vakil/216blog/FOAGjul2724public.pdf.Google Scholar

[vH24] Van Hoften, P., ‘On the ordinary Hecke orbit conjecture’, Algebra Number Theory 18(5) (2024), 847–898. MR 4732752Google Scholar | DOI

[WZ18] Wedhorn, T. and Ziegler, P., ‘Tautological rings of Shimura varieties and cycle classes of Ekedahl-Oort strata’, Preprint, 2018, .Google Scholar | arXiv

[XZ17] Xiao, L. and Zhu, X., ‘Cycles on Shimura varieties via geometric Satake’, Preprint, 2017, .Google Scholar | arXiv

[Zho20] Zhou, R., ‘Mod isogeny classes on Shimura varieties with parahoric level structure’, Duke Math. J. 169(15) (2020), 2937–3031.Google Scholar | DOI

[Zhu17] Zhu, X., ‘Affine Grassmannians and the geometric Satake in mixed characteristic’, Ann. Math. (2) 185(2) (2017), 403–492.Google Scholar | DOI

[ZZ20] Zhou, R. and Zhu, Y., ‘Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties’, Camb. J. Math. 8(1) (2020), 149–241.Google Scholar | DOI

Cité par Sources :