Virasoro Constraints for Toric Bundles
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that the Virasoro conjecture in Gromov–Witten theory holds for the the total space of a toric bundle $E \to B$ if and only if it holds for the base B. The main steps are: (i) We establish a localization formula that expresses Gromov–Witten invariants of E, equivariant with respect to the fiberwise torus action in terms of genus-zero invariants of the toric fiber and all-genus invariants of B, and (ii) we pass to the nonequivariant limit in this formula, using Brown’s mirror theorem for toric bundles.
@article{10_1017_fmp_2024_2,
     author = {Tom Coates and Alexander Givental and Hsian-Hua Tseng},
     title = {Virasoro {Constraints} for {Toric} {Bundles}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.2/}
}
TY  - JOUR
AU  - Tom Coates
AU  - Alexander Givental
AU  - Hsian-Hua Tseng
TI  - Virasoro Constraints for Toric Bundles
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.2/
DO  - 10.1017/fmp.2024.2
LA  - en
ID  - 10_1017_fmp_2024_2
ER  - 
%0 Journal Article
%A Tom Coates
%A Alexander Givental
%A Hsian-Hua Tseng
%T Virasoro Constraints for Toric Bundles
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.2/
%R 10.1017/fmp.2024.2
%G en
%F 10_1017_fmp_2024_2
Tom Coates; Alexander Givental; Hsian-Hua Tseng. Virasoro Constraints for Toric Bundles. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.2

[1] Audin, M., Torus Actions on Symplectic Manifolds , revised edn., Progress in Mathematics, vol. 93 (Birkhäuser Verlag, Basel, 2004).Google Scholar

[2] Behrend, K. and Fantechi, B.. The intrinsic normal cone. Invent. Math., 128(1):45–88, 1997.Google Scholar | DOI

[3] Bertram, A., Ciocan-Fontanine, I. and Kim, B., ‘Two proofs of a conjecture of Hori and Vafa’, Duke Math. J. 126(1) (2005), 101–136.Google Scholar | DOI

[4] Brown, J., ‘Gromov–Witten invariants of toric fibrations’, Int. Math. Res. Not. IMRN (19) (2014), 5437–5482.Google Scholar | DOI

[5] Coates, T., Corti, A., Iritani, H. and Tseng, Hsian-Hua, ‘Computing genus-zero twisted Gromov–Witten invariants’, Duke Math. J. 147(3) (2009), 377–438.Google Scholar | DOI

[6] Coates, T. and Givental, A., ‘Quantum Riemann–Roch, Lefschetz and Serre’, Ann. of Math. (2) 165(1) (2007), 15–53.Google Scholar | DOI

[7] Dijkgraaf, R. and Witten, E., ‘Mean field theory, topological field theory, and multi-matrix models’, Nuclear Phys. B 342(3) (1990), 486–522.Google Scholar | DOI

[8] Eguchi, T., Hori, K. and Xiong, C.-S., ‘Quantum cohomology and Virasoro algebra’, Phys. Lett. B 402(1-2) (1997), 71–80.Google Scholar | DOI

[9] Eguchi, T., Jinzenji, M. and Xiong, C.-S., ‘Quantum cohomology and free-field representation’, Nuclear Physics B 510(3) (1998), 608–622.Google Scholar | DOI

[10] Getzler, E., ‘The Virasoro conjecture for Gromov-Witten invariants’, in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., vol. 241 (Amer. Math. Soc., Providence, RI, 1999), 147–176.Google Scholar | DOI

[11] Getzler, E., ‘The jet-space of a Frobenius manifold and higher-genus Gromov–Witten invariants’, in Frobenius manifolds, Aspects Math., E36, (Vieweg, Wiesbaden, 2004), 45–89.Google Scholar | DOI

[12] Givental, A., ‘A mirror theorem for toric complete intersections’, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., vol. 160 (Birkhäuser Boston, Boston, MA, 1998), 141–175.Google Scholar | DOI

[13] Givental, A., ‘Gromov–Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J. 1(4) (2001), 551–568, 645. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary.Google Scholar | DOI

[14] Givental, A., ‘Semisimple Frobenius structures at higher genus’, Internat. Math. Res. Notices (23) (2001), 1265–1286.Google Scholar | DOI

[15] Givental, A., ‘Symplectic geometry of Frobenius structures’, in Frobenius Manifolds, Aspects Math., E36 (Friedr. Vieweg, Wiesbaden, 2004), 91–112.Google Scholar | DOI

[16] Givental, A., ‘Explicit reconstruction in quantum cohomology and -theory’, Ann. Fac. Sci. Toulouse Math. (6) 25(2–3) (2016), 419–432.Google Scholar | DOI

[17] Graber, T. and Pandharipande, R., ‘Localization of virtual classes’, Invent. Math. 135(2) (1999), 487–518.Google Scholar | DOI

[18] Iritani, H., ‘Convergence of quantum cohomology by quantum Lefschetz’, J. Reine Angew. Math. 610 (2007), 29–69.Google Scholar

[19] Joe, D. and Kim, B., ‘Equivariant mirrors and the Virasoro conjecture for flag manifolds’, Int. Math. Res. Not. (15) (2003), 859–882.Google Scholar | DOI

[20] Kontsevich, M. and Manin, Y., ‘Gromov–Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys. 164(3) (1994), 525–562.Google Scholar | DOI

[21] Kontsevich, M. and Manin, Y., ‘Relations between the correlators of the topological sigma-model coupled to gravity’, Comm. Math. Phys. 196(2) (1998), 385–398.Google Scholar | DOI

[22] Kontsevich, M., ‘Intersection theory on the moduli space of curves and the matrix Airy function’, Comm. Math. Phys. 147(1) (1992), 1–23.Google Scholar | DOI

[23] Kontsevich, M., ‘Enumeration of rational curves via torus actions’, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129 (Birkhäuser Boston, Boston, MA, 1995), 335–368.Google Scholar | DOI

[24] Li, J. and Tian, G., ‘Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties’, J. Amer. Math. Soc. 11(1) (1998), 119–174.Google Scholar | DOI

[25] Liu, X. and Tian, G., ‘Virasoro constraints for quantum cohomology’, J. Differential Geom. 50(3) (1998), 537–590.Google Scholar | DOI

[26] Okounkov, A. and Pandharipande, R., ‘Virasoro constraints for target curves’, Invent. Math. 163(1) (2006), 47–108.Google Scholar | DOI

[27] Sankaran, P. and Uma, V., ‘Cohomology of toric bundles’, Comment. Math. Helv. 78(3) (2003), 540–554. Errata: Comment. Math. Helv. (4) (2004), 840–841.Google Scholar | DOI

[28] Teleman, C., ‘The structure of 2D semi-simple field theories’, Invent. Math. 188(3) (2012), 525–588.Google Scholar | DOI

[29] Witten, E., ‘Two-dimensional gravity and intersection theory on moduli space’, in Surveys in Differential Geometry (Cambridge, MA, 1990) (Lehigh Univ., Bethlehem, PA, 1991), 243–310.Google Scholar

Cité par Sources :