Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_2,
author = {Tom Coates and Alexander Givental and Hsian-Hua Tseng},
title = {Virasoro {Constraints} for {Toric} {Bundles}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.2/}
}
Tom Coates; Alexander Givental; Hsian-Hua Tseng. Virasoro Constraints for Toric Bundles. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.2
[1] , Torus Actions on Symplectic Manifolds , revised edn., Progress in Mathematics, vol. 93 (Birkhäuser Verlag, Basel, 2004).Google Scholar
[2] and . The intrinsic normal cone. Invent. Math., 128(1):45–88, 1997.Google Scholar | DOI
[3] , and , ‘Two proofs of a conjecture of Hori and Vafa’, Duke Math. J. 126(1) (2005), 101–136.Google Scholar | DOI
[4] , ‘Gromov–Witten invariants of toric fibrations’, Int. Math. Res. Not. IMRN (19) (2014), 5437–5482.Google Scholar | DOI
[5] , , and , ‘Computing genus-zero twisted Gromov–Witten invariants’, Duke Math. J. 147(3) (2009), 377–438.Google Scholar | DOI
[6] and , ‘Quantum Riemann–Roch, Lefschetz and Serre’, Ann. of Math. (2) 165(1) (2007), 15–53.Google Scholar | DOI
[7] and , ‘Mean field theory, topological field theory, and multi-matrix models’, Nuclear Phys. B 342(3) (1990), 486–522.Google Scholar | DOI
[8] , and , ‘Quantum cohomology and Virasoro algebra’, Phys. Lett. B 402(1-2) (1997), 71–80.Google Scholar | DOI
[9] , and , ‘Quantum cohomology and free-field representation’, Nuclear Physics B 510(3) (1998), 608–622.Google Scholar | DOI
[10] , ‘The Virasoro conjecture for Gromov-Witten invariants’, in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., vol. 241 (Amer. Math. Soc., Providence, RI, 1999), 147–176.Google Scholar | DOI
[11] , ‘The jet-space of a Frobenius manifold and higher-genus Gromov–Witten invariants’, in Frobenius manifolds, Aspects Math., E36, (Vieweg, Wiesbaden, 2004), 45–89.Google Scholar | DOI
[12] , ‘A mirror theorem for toric complete intersections’, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., vol. 160 (Birkhäuser Boston, Boston, MA, 1998), 141–175.Google Scholar | DOI
[13] , ‘Gromov–Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J. 1(4) (2001), 551–568, 645. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary.Google Scholar | DOI
[14] , ‘Semisimple Frobenius structures at higher genus’, Internat. Math. Res. Notices (23) (2001), 1265–1286.Google Scholar | DOI
[15] , ‘Symplectic geometry of Frobenius structures’, in Frobenius Manifolds, Aspects Math., E36 (Friedr. Vieweg, Wiesbaden, 2004), 91–112.Google Scholar | DOI
[16] , ‘Explicit reconstruction in quantum cohomology and -theory’, Ann. Fac. Sci. Toulouse Math. (6) 25(2–3) (2016), 419–432.Google Scholar | DOI
[17] and , ‘Localization of virtual classes’, Invent. Math. 135(2) (1999), 487–518.Google Scholar | DOI
[18] , ‘Convergence of quantum cohomology by quantum Lefschetz’, J. Reine Angew. Math. 610 (2007), 29–69.Google Scholar
[19] and , ‘Equivariant mirrors and the Virasoro conjecture for flag manifolds’, Int. Math. Res. Not. (15) (2003), 859–882.Google Scholar | DOI
[20] and , ‘Gromov–Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys. 164(3) (1994), 525–562.Google Scholar | DOI
[21] and , ‘Relations between the correlators of the topological sigma-model coupled to gravity’, Comm. Math. Phys. 196(2) (1998), 385–398.Google Scholar | DOI
[22] , ‘Intersection theory on the moduli space of curves and the matrix Airy function’, Comm. Math. Phys. 147(1) (1992), 1–23.Google Scholar | DOI
[23] , ‘Enumeration of rational curves via torus actions’, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129 (Birkhäuser Boston, Boston, MA, 1995), 335–368.Google Scholar | DOI
[24] and , ‘Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties’, J. Amer. Math. Soc. 11(1) (1998), 119–174.Google Scholar | DOI
[25] and , ‘Virasoro constraints for quantum cohomology’, J. Differential Geom. 50(3) (1998), 537–590.Google Scholar | DOI
[26] and , ‘Virasoro constraints for target curves’, Invent. Math. 163(1) (2006), 47–108.Google Scholar | DOI
[27] and , ‘Cohomology of toric bundles’, Comment. Math. Helv. 78(3) (2003), 540–554. Errata: Comment. Math. Helv. (4) (2004), 840–841.Google Scholar | DOI
[28] , ‘The structure of 2D semi-simple field theories’, Invent. Math. 188(3) (2012), 525–588.Google Scholar | DOI
[29] , ‘Two-dimensional gravity and intersection theory on moduli space’, in Surveys in Differential Geometry (Cambridge, MA, 1990) (Lehigh Univ., Bethlehem, PA, 1991), 243–310.Google Scholar
Cité par Sources :