Monochromatic products and sums in the rationals
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that every finite coloring of the rationals contains monochromatic sets of the form $\{x,y,xy,x+y\}$.
@article{10_1017_fmp_2024_19,
     author = {Matt Bowen and Marcin Sabok},
     title = {Monochromatic products and sums in the rationals},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.19/}
}
TY  - JOUR
AU  - Matt Bowen
AU  - Marcin Sabok
TI  - Monochromatic products and sums in the rationals
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.19/
DO  - 10.1017/fmp.2024.19
LA  - en
ID  - 10_1017_fmp_2024_19
ER  - 
%0 Journal Article
%A Matt Bowen
%A Marcin Sabok
%T Monochromatic products and sums in the rationals
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.19/
%R 10.1017/fmp.2024.19
%G en
%F 10_1017_fmp_2024_19
Matt Bowen; Marcin Sabok. Monochromatic products and sums in the rationals. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.19

[BG20] Bergelson, V. and Glasscock, D., ‘On the interplay between additive and multiplicative largeness and its combinatorial applications’, J. Combin. Theory Ser. A 172(2020), 105203, 60.Google Scholar | DOI

[BL96] Bergelson, V. and Leibman, A., ‘Polynomial extensions of van der Waerden's and Szemeredi's theorems’, J. Am. Math. Soc., 9(1996), 725–753.Google Scholar | DOI

[BM17] Bergelson, V. and Moreira, J., ‘Ergodic theorem involving additive and multiplicative groups of a field and patterns’, Ergod. Theory Dyn. Syst. 37(3) (2017), 673–692.Google Scholar | DOI

[BM18] Bergelson, V. and Moreira, J., ‘Measure preserving actions of affine semigroups and patterns’, Ergod. Theory Dyn. Syst. 38(2) (2018), 473–498.Google Scholar | DOI

[Bow22] Bowen, M., ‘Monochromatic products and sums in -colorings of ’, Preprint, 2012, .Google Scholar | arXiv

[Cil12] Cilleruelo, J., ‘Combinatorial problems in finite fields and Sidon sets’, Combinatorica 32(5) (2012), 497–511.Google Scholar | DOI

[FK91] Furstenberg, H. and Katznelson, Y., ‘A density version of the Hales–Jewett theorem’, J. Anal. Math. 57(1) (1991), 64–119.Google Scholar | DOI

[FW78] Furstenberg, H. and Weiss, B., ‘Topological dynamics and combinatorial number theory’, J. Anal. Math. 34(1) (1978), 61–85.Google Scholar | DOI

[Gre69] Greenleaf, F., ‘Invariant means on topological groups and their applications’, in Van Nostrand Mathematical Studies Series, No. 16 (Van Nostrand Reinhold Company, New York, 1969), iii–113.Google Scholar

[GRS91] Graham, R. L., Rothschild, B. L. and Spencer, J. H., Ramsey Theory, vol. 20 (John Wiley & Sons, New York, 1991), xi–193.Google Scholar

[GS16] Green, B. and Sanders, T., ‘Monochromatic sums and products’, Discrete Anal. (2016), 613.Google Scholar

[Han13] Hanson, B., ‘Capturing forms in dense subsets of finite fields’, Acta Arith. 160(3) (2013), 277–284.Google Scholar | DOI

[HIL23] Hindman, N., Ivan, M.-R. and Leader, I., ‘Some new results on monochromatic sums and products in the rationals’, N. Y. J. Math. 29 (2023), 301–322.Google Scholar

[Hin74] Hindman, N., ‘Finite sums from sequences within cells of a partition of ’, J. Comb. Theory Ser. A 17 (1974), 1–11.Google Scholar | DOI

[Hin79] Hindman, N., ‘Partitions and sums and products of integers’, Trans. Am. Math. Soc. 247 (1979), 227–245.Google Scholar | DOI

[HS12] Hindman, N. and Strauss, D., ‘Algebra in the Stone-Čech compactification’, in Theory and Applications, second revised and extended edition (De Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012), i–577.Google Scholar

[Mor13] Moreira, J., ‘On patterns in large sets of countable fields’, blog post (2013) https://joelmoreira.wordpress.com/2013/08/03/on-xyxy-patterns-in-large-sets-of-countable-fields/.Google Scholar

[Mor17] Moreira, J., ‘Monochromatic sums and products in ’, Ann. Math. (2017), 1069–1090.Google Scholar

[Qua23] Sloman, L. (Quanta), ‘Coloring by numbers reveals arithmetic patterns in fractions’, (March, 2023), https://www.quantamagazine.org/coloring-by-numbers-reveals-arithmetic-patterns-in-fractions-20230315/.Google Scholar

[Sch16] Schur, I., ‘Über die Kongruenz (mod )’, Jahresbericht der Deutschen Math. Verein. 25 (1916), 114–117.Google Scholar

[Shk10] Shkredov, I. D., ‘On monochromatic solutions of some nonlinear equations in ’, Mat. Zametki 88(4) (2010), 625–634.Google Scholar | DOI

[Sze75] Szemerédi, E., ‘On sets of integers containing no elements in arithmetic progression’, Acta Arith. 27 (1975), 199–245.Google Scholar | DOI

[Tod10] Todorcevic, S., ‘Introduction to Ramsey spaces’, in Annals of Mathematics Studies, vol. 174 (Princeton University Press, Princeton, NJ, 2010), 1–296.Google Scholar

[TZ12] Tent, K. and Ziegler, M., ‘A course in model theory’, in Lecture Notes in Logic, no. 40 (Cambridge University Press, 2012), i–248.Google Scholar

[Wae27] Van Der Waerden, B. L., ‘Beweis einer baudetschen Vermutung’, Nieuw. Arch. Wisk. 15 (1927), 212–216.Google Scholar

[Xia22] Xiao, R., ‘Monochromatic quotients, products and polynomial sums in the rationals’, Preprint, 2022, .Google Scholar | arXiv

Cité par Sources :