Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_18,
author = {Bo-Hae Im and Hojin Kim and Khac Nhuan Le and Tuan Ngo Dac and Lan Huong Pham},
title = {Zagier{\textendash}Hoffman{\textquoteright}s {Conjectures} in {Positive} {Characteristic}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.18/}
}
TY - JOUR AU - Bo-Hae Im AU - Hojin Kim AU - Khac Nhuan Le AU - Tuan Ngo Dac AU - Lan Huong Pham TI - Zagier–Hoffman’s Conjectures in Positive Characteristic JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.18/ DO - 10.1017/fmp.2024.18 LA - en ID - 10_1017_fmp_2024_18 ER -
%0 Journal Article %A Bo-Hae Im %A Hojin Kim %A Khac Nhuan Le %A Tuan Ngo Dac %A Lan Huong Pham %T Zagier–Hoffman’s Conjectures in Positive Characteristic %J Forum of Mathematics, Pi %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.18/ %R 10.1017/fmp.2024.18 %G en %F 10_1017_fmp_2024_18
Bo-Hae Im; Hojin Kim; Khac Nhuan Le; Tuan Ngo Dac; Lan Huong Pham. Zagier–Hoffman’s Conjectures in Positive Characteristic. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.18
[1] , ‘-motives’, Duke Math. J. 53(2) (1986), 457–502.Google Scholar | DOI
[2] , and , ‘Determination of the algebraic relations among special -values in positive characteristic’, Ann. of Math. (2) 160(1) (2004), 237–313.Google Scholar | DOI
[3] and , ‘Tensor powers of the Carlitz module and zeta values’, Ann. of Math. (2) 132(1) (1990), 159–191.Google Scholar | DOI
[4] and , ‘Multizeta values for , their period interpretation, and relations between them’, Int. Math. Res. Not. IMRN (11) (2009), 2038–2055.Google Scholar
[5] , ‘Mixed Tate motives over ’, Ann. of Math. (2) 175 (2012), 949–976.Google Scholar | DOI
[6] and , ‘A rapid introduction to Drinfeld modules, -modules and -motives’, in -Motives: Hodge Structures, Transcendence and Other Motivic Aspects, edited by , , and , EMS Series of Congress Reports (European Mathematical Society, 2020), 3–30.Google Scholar | DOI
[7] and , ‘Multiple zeta values: from numbers to motives’, Clay Mathematics Proceedings. To appear.Google Scholar
[8] , ‘On certain functions connected with polynomials in Galois field’, Duke Math. J. 1(2) (1935), 137–168.Google Scholar | DOI
[9] , ‘Linear independence of monomials of multizeta values in positive characteristic’, Compos. Math. 150(11) (2014), 1789–1808.Google Scholar | DOI
[10] , and , ‘On Thakur’s basis conjecture for multiple zeta values in positive characteristic’, Preprint, 2022, .Google Scholar | arXiv | DOI
[11] , and , ‘An effective criterion for Eulerian multizeta values in positive characteristic’, J. Eur. Math. Soc. (JEMS) 21(2) (2019), 405–440.Google Scholar | DOI
[12] , ‘On motivic multiple t values, Saha’s basis conjecture, and generators of alternating MZV’s’, Preprint, 2021, , 2021.Google Scholar | arXiv
[13] , ‘On shuffle of double zeta values over ’, J. Number Theory 148 (2015), 153–163.Google Scholar | DOI
[14] and , ‘On lower bounds of the dimensions of multizeta values in positive characteristic’, Doc. Math. 26 (2021), 537–559.Google Scholar | DOI
[15] , ‘Le groupe fondamental unipotent motivique de , pour ou ’, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 101–141.Google Scholar | DOI
[16] , ‘Multizêtas, d’après Francis Brown’, Séminaire Bourbaki (2011/2012), 1043–1058; Astérisque 352 (2013), 161–185.Google Scholar
[17] and , ‘Groupes fondamentaux motiviques de Tate mixte’, Ann. Sci. École Norm. Sup. (4) 38(1) (2005), 1–56.Google Scholar | DOI
[18] and , ‘Trivial multiple zeta values in Tate algebras’, International Mathematics Research Notices (2021). To appear.Google Scholar | DOI
[19] , ‘The double logarithm and Manin’s complex for modular curves’, Math. Res. Lett. 4(5) (1997), 617–636.Google Scholar | DOI
[20] , Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 35 (Springer-Verlag, Berlin, 1996).Google Scholar | DOI
[21] , ‘Alternating multizeta values in positive characteristic’, Math. Z. 298(3-4) (2021), 1263–1291.Google Scholar | DOI
[22] and . Pink’s theory of Hodge structures and the Hodge conjectures over function fields’, in -Motives: Hodge Structures, Transcendence and Other Motivic Aspects, edited by , , and , EMS Series of Congress Reports (European Mathematical Society, 2020), 31–182.Google Scholar | DOI
[23] , ‘The algebra of multiple harmonic series’, J. Algebra 194 (1997), 477–495.Google Scholar | DOI
[24] , ‘An odd variant of multiple zeta values’, Commun. Number Theory Phys. 13(3) (2019), 529–567.Google Scholar | DOI
[25] , , , and , ‘Zagier–Hoffman’s conjectures in positive characteristic’, Preprint, 2024, .Google Scholar | arXiv
[26] , , , and , ‘Note on linear independence of alternating multiple zeta values in positive characteristic’, (2023). URL: , 2023.Google Scholar | HAL
[27] and , ‘Criterion for deciding zeta-like multizeta values in positive characteristic’, Exp. Math. 25(3) (2016), 246–256.Google Scholar | DOI
[28] and , ‘Zeta-like multizeta values for ’, Indian J. Pure Appl. Math. 45(5) (2014), 787–801.Google Scholar | DOI
[29] and , ‘Zeta-like multizeta values for higher genus curves’, J. Théor. Nombres Bordeaux 33(2) (2021), 553–581.Google Scholar | DOI
[30] and , ‘Zeta-like multiple zeta values in positive characteristic’, Math. Z. 301 (2022), 2037–2057.Google Scholar | DOI
[31] , ‘On Zagier–Hoffman’s conjectures in positive characteristic’, Ann. of Math. (2) 194(1) (2021), 361–392.Google Scholar | DOI
[32] , ‘Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms’, Invent. Math. 171(1) (2008), 123–174.Google Scholar | DOI
[33] , ‘Values of certain -series in positive characteristic’, Ann. of Math. (2) 176(3) (2012), 2055–2093.Google Scholar | DOI
[34] , ‘Mixed Tate motives and multiple zeta values’, Invent. Math. 149(2) (2002), 339–369.Google Scholar | DOI
[35] , Function Field Arithmetic (World Scientific Publishing Co., Inc., River Edge, NJ, 2004).Google Scholar | DOI
[36] , ‘Power sums with applications to multizeta and zeta zero distribution for ’, Finite Fields Appl. 15(4) (2009), 534–552.Google Scholar | DOI
[37] , ‘Relations between multizeta values for ’, Int. Math. Res. Not. (12) (2009), 2318–2346.Google Scholar | DOI
[38] , ‘Shuffle relations for function field multizeta values’, Int. Math. Res. Not. IMRN (11) (2010), 1973–1980.Google Scholar
[39] , ‘Multizeta values for function fields: A survey’, J. Théor. Nombres Bordeaux 29(3) (2017), 997–1023.Google Scholar | DOI
[40] , ‘Multizeta in function field arithmetic’, in -Motives: Hodge Structures, Transcendence and Other Motivic Aspects, edited by , , and , EMS Series of Congress Reports (European Mathematical Society, 2020), 441–452.Google Scholar | DOI
[41] , ‘A conjectural characterization for -linear relations between multizeta values’, J. Number Theory 187 (2018), 264–228.Google Scholar | DOI
[42] , ‘Transcendence and special zeta values in characteristic ’, Ann. of Math. (2) 134(1) (1991) 1–23.Google Scholar | DOI
[43] , ‘Values of zeta functions and their applications’, in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math, vol. 120 (Birkhäuser, Basel, 1994), 497–512.Google Scholar | DOI
[44] , Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values, Series on Number Theory and its Applications, vol. 12 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016).Google Scholar | DOI
Cité par Sources :