Zagier–Hoffman’s Conjectures in Positive Characteristic
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
@article{10_1017_fmp_2024_18,
     author = {Bo-Hae Im and Hojin Kim and Khac Nhuan Le and Tuan Ngo Dac and Lan Huong Pham},
     title = {Zagier{\textendash}Hoffman{\textquoteright}s {Conjectures} in {Positive} {Characteristic}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.18/}
}
TY  - JOUR
AU  - Bo-Hae Im
AU  - Hojin Kim
AU  - Khac Nhuan Le
AU  - Tuan Ngo Dac
AU  - Lan Huong Pham
TI  - Zagier–Hoffman’s Conjectures in Positive Characteristic
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.18/
DO  - 10.1017/fmp.2024.18
LA  - en
ID  - 10_1017_fmp_2024_18
ER  - 
%0 Journal Article
%A Bo-Hae Im
%A Hojin Kim
%A Khac Nhuan Le
%A Tuan Ngo Dac
%A Lan Huong Pham
%T Zagier–Hoffman’s Conjectures in Positive Characteristic
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.18/
%R 10.1017/fmp.2024.18
%G en
%F 10_1017_fmp_2024_18
Bo-Hae Im; Hojin Kim; Khac Nhuan Le; Tuan Ngo Dac; Lan Huong Pham. Zagier–Hoffman’s Conjectures in Positive Characteristic. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.18

[1] Anderson, G., ‘-motives’, Duke Math. J. 53(2) (1986), 457–502.Google Scholar | DOI

[2] Anderson, G., Brownawell, W. D. and Papanikolas, M., ‘Determination of the algebraic relations among special -values in positive characteristic’, Ann. of Math. (2) 160(1) (2004), 237–313.Google Scholar | DOI

[3] Anderson, G. and Thakur, D., ‘Tensor powers of the Carlitz module and zeta values’, Ann. of Math. (2) 132(1) (1990), 159–191.Google Scholar | DOI

[4] Anderson, G. and Thakur, D., ‘Multizeta values for , their period interpretation, and relations between them’, Int. Math. Res. Not. IMRN (11) (2009), 2038–2055.Google Scholar

[5] Brown, F., ‘Mixed Tate motives over ’, Ann. of Math. (2) 175 (2012), 949–976.Google Scholar | DOI

[6] Brownawell, D. and Papanikolas, M., ‘A rapid introduction to Drinfeld modules, -modules and -motives’, in -Motives: Hodge Structures, Transcendence and Other Motivic Aspects, edited by Böckle, G., Goss, D., Hartl, U. and Papanikolas, M., EMS Series of Congress Reports (European Mathematical Society, 2020), 3–30.Google Scholar | DOI

[7] Burgos Gil, J. and Fresan, J., ‘Multiple zeta values: from numbers to motives’, Clay Mathematics Proceedings. To appear.Google Scholar

[8] Carlitz, L., ‘On certain functions connected with polynomials in Galois field’, Duke Math. J. 1(2) (1935), 137–168.Google Scholar | DOI

[9] Chang, C.-Y., ‘Linear independence of monomials of multizeta values in positive characteristic’, Compos. Math. 150(11) (2014), 1789–1808.Google Scholar | DOI

[10] Chang, C.-Y., Chen, Y.-T and Mishiba, Y., ‘On Thakur’s basis conjecture for multiple zeta values in positive characteristic’, Preprint, 2022, .Google Scholar | arXiv | DOI

[11] Chang, C.-Y., Papanikolas, M. and Yu, J., ‘An effective criterion for Eulerian multizeta values in positive characteristic’, J. Eur. Math. Soc. (JEMS) 21(2) (2019), 405–440.Google Scholar | DOI

[12] Charlton, S., ‘On motivic multiple t values, Saha’s basis conjecture, and generators of alternating MZV’s’, Preprint, 2021, , 2021.Google Scholar | arXiv

[13] Chen, H.-J., ‘On shuffle of double zeta values over ’, J. Number Theory 148 (2015), 153–163.Google Scholar | DOI

[14] Chen, Y.-T. and Harada, R., ‘On lower bounds of the dimensions of multizeta values in positive characteristic’, Doc. Math. 26 (2021), 537–559.Google Scholar | DOI

[15] Deligne, P., ‘Le groupe fondamental unipotent motivique de , pour ou ’, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 101–141.Google Scholar | DOI

[16] Deligne, P., ‘Multizêtas, d’après Francis Brown’, Séminaire Bourbaki (2011/2012), 1043–1058; Astérisque 352 (2013), 161–185.Google Scholar

[17] Deligne, P. and Goncharov, A., ‘Groupes fondamentaux motiviques de Tate mixte’, Ann. Sci. École Norm. Sup. (4) 38(1) (2005), 1–56.Google Scholar | DOI

[18] Gezmis, O. and Pellarin, F., ‘Trivial multiple zeta values in Tate algebras’, International Mathematics Research Notices (2021). To appear.Google Scholar | DOI

[19] Goncharov, A., ‘The double logarithm and Manin’s complex for modular curves’, Math. Res. Lett. 4(5) (1997), 617–636.Google Scholar | DOI

[20] Goss, D., Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 35 (Springer-Verlag, Berlin, 1996).Google Scholar | DOI

[21] Harada, R., ‘Alternating multizeta values in positive characteristic’, Math. Z. 298(3-4) (2021), 1263–1291.Google Scholar | DOI

[22] Hartl, U. and Juschka, A. K.. Pink’s theory of Hodge structures and the Hodge conjectures over function fields’, in -Motives: Hodge Structures, Transcendence and Other Motivic Aspects, edited by Böckle, G., Goss, D., Hartl, U. and Papanikolas, M., EMS Series of Congress Reports (European Mathematical Society, 2020), 31–182.Google Scholar | DOI

[23] Hoffman, M., ‘The algebra of multiple harmonic series’, J. Algebra 194 (1997), 477–495.Google Scholar | DOI

[24] Hoffman, M., ‘An odd variant of multiple zeta values’, Commun. Number Theory Phys. 13(3) (2019), 529–567.Google Scholar | DOI

[25] Im, B.-H., Kim, H., Le, K. N., Ngo Dac, T. and Pham, L. H., ‘Zagier–Hoffman’s conjectures in positive characteristic’, Preprint, 2024, .Google Scholar | arXiv

[26] Im, B.-H., Kim, H., Le, K. N., Ngo Dac, T. and Pham, L. H., ‘Note on linear independence of alternating multiple zeta values in positive characteristic’, (2023). URL: , 2023.Google Scholar | HAL

[27] Kuan, Y.-L. and Lin, Y.-H., ‘Criterion for deciding zeta-like multizeta values in positive characteristic’, Exp. Math. 25(3) (2016), 246–256.Google Scholar | DOI

[28] Rodriguez, J. A. Lara and Thakur, D., ‘Zeta-like multizeta values for ’, Indian J. Pure Appl. Math. 45(5) (2014), 787–801.Google Scholar | DOI

[29] Lara Rodriguez, J. A. and Thakur, D., ‘Zeta-like multizeta values for higher genus curves’, J. Théor. Nombres Bordeaux 33(2) (2021), 553–581.Google Scholar | DOI

[30] Le, H. H. and Ngo Dac, T., ‘Zeta-like multiple zeta values in positive characteristic’, Math. Z. 301 (2022), 2037–2057.Google Scholar | DOI

[31] Ngo Dac, T., ‘On Zagier–Hoffman’s conjectures in positive characteristic’, Ann. of Math. (2) 194(1) (2021), 361–392.Google Scholar | DOI

[32] Papanikolas, M., ‘Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms’, Invent. Math. 171(1) (2008), 123–174.Google Scholar | DOI

[33] Pellarin, F., ‘Values of certain -series in positive characteristic’, Ann. of Math. (2) 176(3) (2012), 2055–2093.Google Scholar | DOI

[34] Terasoma, T., ‘Mixed Tate motives and multiple zeta values’, Invent. Math. 149(2) (2002), 339–369.Google Scholar | DOI

[35] Thakur, D., Function Field Arithmetic (World Scientific Publishing Co., Inc., River Edge, NJ, 2004).Google Scholar | DOI

[36] Thakur, D., ‘Power sums with applications to multizeta and zeta zero distribution for ’, Finite Fields Appl. 15(4) (2009), 534–552.Google Scholar | DOI

[37] Thakur, D., ‘Relations between multizeta values for ’, Int. Math. Res. Not. (12) (2009), 2318–2346.Google Scholar | DOI

[38] Thakur, D., ‘Shuffle relations for function field multizeta values’, Int. Math. Res. Not. IMRN (11) (2010), 1973–1980.Google Scholar

[39] Thakur, D., ‘Multizeta values for function fields: A survey’, J. Théor. Nombres Bordeaux 29(3) (2017), 997–1023.Google Scholar | DOI

[40] Thakur, D., ‘Multizeta in function field arithmetic’, in -Motives: Hodge Structures, Transcendence and Other Motivic Aspects, edited by Böckle, G., Goss, D., Hartl, U. and Papanikolas, M., EMS Series of Congress Reports (European Mathematical Society, 2020), 441–452.Google Scholar | DOI

[41] Todd, G., ‘A conjectural characterization for -linear relations between multizeta values’, J. Number Theory 187 (2018), 264–228.Google Scholar | DOI

[42] Yu, J., ‘Transcendence and special zeta values in characteristic ’, Ann. of Math. (2) 134(1) (1991) 1–23.Google Scholar | DOI

[43] Zagier, D., ‘Values of zeta functions and their applications’, in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math, vol. 120 (Birkhäuser, Basel, 1994), 497–512.Google Scholar | DOI

[44] Zhao, J., Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values, Series on Number Theory and its Applications, vol. 12 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016).Google Scholar | DOI

Cité par Sources :