Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system. We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted) Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some $\mathscr {D}_{X}$-module applications: For example, we give a sharp restriction on the codimension one components of the multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato polynomial of a non-smooth, central, reduced arrangement live in $(-2 + 1/d, 0).$
@article{10_1017_fmp_2024_17,
     author = {Daniel Bath},
     title = {Hyperplane {Arrangements} {Satisfy} {(Un)Twisted} {Logarithmic} {Comparison} {Theorems,} {Applications} to $\mathscr {D}_{X}$-modules},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.17/}
}
TY  - JOUR
AU  - Daniel Bath
TI  - Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.17/
DO  - 10.1017/fmp.2024.17
LA  - en
ID  - 10_1017_fmp_2024_17
ER  - 
%0 Journal Article
%A Daniel Bath
%T Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.17/
%R 10.1017/fmp.2024.17
%G en
%F 10_1017_fmp_2024_17
Daniel Bath. Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.17

[1] Bath, D., ‘A note on Bernstein–Sato varieties for tame divisors and arrangements’, Preprint, 2020, .Google Scholar | arXiv

[2] Bath, D., ‘Combinatorially determined zeroes of Bernstein–Sato Ideals for tame and free arrangements’, J. Singul. 20 (2020), 165–204.Google Scholar

[3] Benson, D. J., ‘On the regularity conjecture for the cohomology of finite groups’, Proc. Edinb. Math. Soc. (2) 51(2) (2008), 273–284.Google Scholar | DOI

[4] Brieskorn, E., ‘Sur les groupes de tresses [d’après V. I. Arnold]’, in Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Math., vol. 317 (1973), 21–44.Google Scholar

[5] Budur, N., ‘Bernstein–Sato ideals and local systems’, Ann. Inst. Fourier (Grenoble) 65(2) (2015), 549–603.Google Scholar | DOI

[6] Budur, N., Van Der Veer, R., Wu, L. and Zhou, P., ‘Zero loci of Bernstein–Sato ideals. Invent. Math. 225 (2021), 45–72.Google Scholar | DOI

[7] Budur, N., Van Der Veer, R., Wu, L. and Zhou, P., ‘Zero loci of Bernstein–Sato ideals—ii’, Selecta Math. (N.S.) 27(3) (2021).Google Scholar | DOI

[8] Calderón Moreno, F. J. and Narváez Macarro, L., ‘On the Logarithmic Comparison Theorem for integrable logarithmic connections’, Proc. Lond. Math. Soc. (3) 98(3) (2009), 585–606.Google Scholar | DOI

[9] Castro-Jiménez, F. J., Narváez-Macarro, L. and Mond, D., ‘Cohomology of the complement of a free divisor’, Trans. Amer. Math. Soc. 348(8) (1996), 3037–3049.Google Scholar | DOI

[10] Cohen, D., Denham, G., Falk, M. and Varchenko, A., ‘Critical points and resonance of hyperplane arrangements’, Canad. J. Math. 63(5) (2011), 1038–1057.Google Scholar | DOI

[11] Cohen, D. C., ‘Triples of arrangements and local systems’, Proc. Amer. Math. Soc. 130(10) (2002), 3025–3031.Google Scholar | DOI

[12] Cohen, D. C. and Suciu, A. I., ‘Characteristic varieties of arrangements’, Math. Proc. Cambridge Philos. Soc. 127(1) (1999), 33–53.Google Scholar | DOI

[13] Denham, G. and Schulze, M., ‘Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements’, in Arrangements of Hyperplanes—Sapporo 2009, Adv. Stud. Pure Math., vol. 62 (Math. Soc. Japan, Tokyo, 2012), 27–57.Google Scholar

[14] Derksen, H. and Sidman, J., ‘Castelnuovo–Mumford regularity by approximation’, Adv. Math. 188(1) (2004), 104–123.Google Scholar | DOI

[15] Dimca, A., Hyperplane Arrangements, Universitext (Springer, Cham, 2017). An introduction. Google Scholar

[16] Esnault, H., Schechtman, V. and Viehweg, E., ‘Cohomology of local systems on the complement of hyperplanes’, Invent. Math. 109(3) (1992), 557–561.Google Scholar | DOI

[17] Grothendieck, A., ‘On the de Rham cohomology of algebraic varieties’, Inst. Hautes Études Sci. Publ. Math. (29) (1966), 95–103.Google Scholar | DOI

[18] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, No. 52 (Springer-Verlag, New York-Heidelberg, 1977).Google Scholar | DOI

[19] Holland, M. P. and Mond, D., ‘Logarithmic differential forms and the cohomology of the complement of a divisor’, Math. Scand. 83(2) (1998), 235–254.Google Scholar | DOI

[20] Kawahara, Y., ‘The twisted de Rham cohomology for basic constructions of hyperplane arrangements and its applications’, Hokkaido Math. J. 34(2) (2005), 489–505.Google Scholar | DOI

[21] Maisonobe, P., Filtration Relative, l’Idéal de Bernstein et ses pentes’, Rend . Sem. Mat. Univ. Padova. To appear. Google Scholar

[22] Narváez Macarro, L., ‘Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors’, Contem. Math. 474 (2008), 245–269.Google Scholar | DOI

[23] Narváez Macarro, L., ‘A duality approach to the symmetry of Bernstein–Sato polynomials of free divisors’, Adv. Math. 281 (2015), 1242–1273.Google Scholar | DOI

[24] Oaku, T. and Takayama, N., ‘An algorithm for de Rham cohomology groups of the complement of an affine variety via -module computation’, Effective Methods in Algebraic Geometry, vol. 139 (Saint-Malo, 1998), 201–233.Google Scholar

[25] Orlik, P., ‘Hypergeometric integrals and arrangements’, Continued Fractions and Geometric Function Theory (CONFUN) , vol. 105 (Trondheim, 1997), 417–424.Google Scholar

[26] Orlik, P. and Terao, H., Arrangements of Hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] , vol. 300 (Springer-Verlag, Berlin, 1992).Google Scholar

[27] Sabbah, C., ‘Proximité évanescente. I. La structure polaire d’un -module’, Compositio Math. 62(3) (1987), 283–328.Google Scholar

[28] Saito, K., ‘Theory of logarithmic differential forms and logarithmic vector fields’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2) (1980), 265–291.Google Scholar

[29] Saito, M., ‘Bernstein–Sato polynomials of hyperplane arrangements’, Selecta Math. (N.S.) 22(4) (2016), 2017–2057.Google Scholar | DOI

[30] Saito, M., ‘Degeneration of pole order spectral sequences for hyperplane arrangements of 4 variables’, Preprint, 2019, .Google Scholar | arXiv

[31] Suciu, A. I., ‘Translated tori in the characteristic varieties of complex hyperplane arrangements’, in Arrangements in Boston: A Conference on Hyperplane Arrangements, vol. 118 (1999), 209–223.Google Scholar

[32] Symonds, P., ‘On the Castelnuovo–Mumford regularity of the cohomology ring of a group’, J. Amer. Math. Soc. 23(4) (2010), 1159–1173.Google Scholar | DOI

[33] Terao, H., ‘Forms with logarithmic pole and the filtration by the order of the pole’, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (Kinokuniya Book Store, Tokyo, 1978), 673–685.Google Scholar

[34] Torrelli, T., ‘Logarithmic Comparison Theorem and modules: An overview’, in Singularity Theory (World Sci. Publ., Hackensack, NJ, 2007), 995–1009.Google Scholar

[35] Walther, U., ‘Bernstein–Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements’, Compos. Math. 141(1) (2005), 121–145.Google Scholar | DOI

[36] Wiens, J. and Yuzvinsky, S., ‘De Rham cohomology of logarithmic forms on arrangements of hyperplanes’, Trans. Amer. Math. Soc. 349(4) (1997), 1653–1662.Google Scholar | DOI

Cité par Sources :