Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_17,
author = {Daniel Bath},
title = {Hyperplane {Arrangements} {Satisfy} {(Un)Twisted} {Logarithmic} {Comparison} {Theorems,} {Applications} to $\mathscr {D}_{X}$-modules},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.17},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.17/}
}
TY - JOUR
AU - Daniel Bath
TI - Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules
JO - Forum of Mathematics, Pi
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.17/
DO - 10.1017/fmp.2024.17
LA - en
ID - 10_1017_fmp_2024_17
ER -
%0 Journal Article
%A Daniel Bath
%T Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.17/
%R 10.1017/fmp.2024.17
%G en
%F 10_1017_fmp_2024_17
Daniel Bath. Hyperplane Arrangements Satisfy (Un)Twisted Logarithmic Comparison Theorems, Applications to $\mathscr {D}_{X}$-modules. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.17
[1] , ‘A note on Bernstein–Sato varieties for tame divisors and arrangements’, Preprint, 2020, .Google Scholar | arXiv
[2] , ‘Combinatorially determined zeroes of Bernstein–Sato Ideals for tame and free arrangements’, J. Singul. 20 (2020), 165–204.Google Scholar
[3] , ‘On the regularity conjecture for the cohomology of finite groups’, Proc. Edinb. Math. Soc. (2) 51(2) (2008), 273–284.Google Scholar | DOI
[4] , ‘Sur les groupes de tresses [d’après V. I. Arnold]’, in Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Math., vol. 317 (1973), 21–44.Google Scholar
[5] , ‘Bernstein–Sato ideals and local systems’, Ann. Inst. Fourier (Grenoble) 65(2) (2015), 549–603.Google Scholar | DOI
[6] , , and , ‘Zero loci of Bernstein–Sato ideals. Invent. Math. 225 (2021), 45–72.Google Scholar | DOI
[7] , , and , ‘Zero loci of Bernstein–Sato ideals—ii’, Selecta Math. (N.S.) 27(3) (2021).Google Scholar | DOI
[8] and , ‘On the Logarithmic Comparison Theorem for integrable logarithmic connections’, Proc. Lond. Math. Soc. (3) 98(3) (2009), 585–606.Google Scholar | DOI
[9] , and , ‘Cohomology of the complement of a free divisor’, Trans. Amer. Math. Soc. 348(8) (1996), 3037–3049.Google Scholar | DOI
[10] , , and , ‘Critical points and resonance of hyperplane arrangements’, Canad. J. Math. 63(5) (2011), 1038–1057.Google Scholar | DOI
[11] , ‘Triples of arrangements and local systems’, Proc. Amer. Math. Soc. 130(10) (2002), 3025–3031.Google Scholar | DOI
[12] and , ‘Characteristic varieties of arrangements’, Math. Proc. Cambridge Philos. Soc. 127(1) (1999), 33–53.Google Scholar | DOI
[13] and , ‘Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements’, in Arrangements of Hyperplanes—Sapporo 2009, Adv. Stud. Pure Math., vol. 62 (Math. Soc. Japan, Tokyo, 2012), 27–57.Google Scholar
[14] and , ‘Castelnuovo–Mumford regularity by approximation’, Adv. Math. 188(1) (2004), 104–123.Google Scholar | DOI
[15] , Hyperplane Arrangements, Universitext (Springer, Cham, 2017). An introduction. Google Scholar
[16] , and , ‘Cohomology of local systems on the complement of hyperplanes’, Invent. Math. 109(3) (1992), 557–561.Google Scholar | DOI
[17] , ‘On the de Rham cohomology of algebraic varieties’, Inst. Hautes Études Sci. Publ. Math. (29) (1966), 95–103.Google Scholar | DOI
[18] , Algebraic Geometry, Graduate Texts in Mathematics, No. 52 (Springer-Verlag, New York-Heidelberg, 1977).Google Scholar | DOI
[19] and , ‘Logarithmic differential forms and the cohomology of the complement of a divisor’, Math. Scand. 83(2) (1998), 235–254.Google Scholar | DOI
[20] , ‘The twisted de Rham cohomology for basic constructions of hyperplane arrangements and its applications’, Hokkaido Math. J. 34(2) (2005), 489–505.Google Scholar | DOI
[21] , Filtration Relative, l’Idéal de Bernstein et ses pentes’, Rend . Sem. Mat. Univ. Padova. To appear. Google Scholar
[22] , ‘Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors’, Contem. Math. 474 (2008), 245–269.Google Scholar | DOI
[23] , ‘A duality approach to the symmetry of Bernstein–Sato polynomials of free divisors’, Adv. Math. 281 (2015), 1242–1273.Google Scholar | DOI
[24] and , ‘An algorithm for de Rham cohomology groups of the complement of an affine variety via -module computation’, Effective Methods in Algebraic Geometry, vol. 139 (Saint-Malo, 1998), 201–233.Google Scholar
[25] , ‘Hypergeometric integrals and arrangements’, Continued Fractions and Geometric Function Theory (CONFUN) , vol. 105 (Trondheim, 1997), 417–424.Google Scholar
[26] and , Arrangements of Hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] , vol. 300 (Springer-Verlag, Berlin, 1992).Google Scholar
[27] , ‘Proximité évanescente. I. La structure polaire d’un -module’, Compositio Math. 62(3) (1987), 283–328.Google Scholar
[28] , ‘Theory of logarithmic differential forms and logarithmic vector fields’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2) (1980), 265–291.Google Scholar
[29] , ‘Bernstein–Sato polynomials of hyperplane arrangements’, Selecta Math. (N.S.) 22(4) (2016), 2017–2057.Google Scholar | DOI
[30] , ‘Degeneration of pole order spectral sequences for hyperplane arrangements of 4 variables’, Preprint, 2019, .Google Scholar | arXiv
[31] , ‘Translated tori in the characteristic varieties of complex hyperplane arrangements’, in Arrangements in Boston: A Conference on Hyperplane Arrangements, vol. 118 (1999), 209–223.Google Scholar
[32] , ‘On the Castelnuovo–Mumford regularity of the cohomology ring of a group’, J. Amer. Math. Soc. 23(4) (2010), 1159–1173.Google Scholar | DOI
[33] , ‘Forms with logarithmic pole and the filtration by the order of the pole’, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (Kinokuniya Book Store, Tokyo, 1978), 673–685.Google Scholar
[34] , ‘Logarithmic Comparison Theorem and modules: An overview’, in Singularity Theory (World Sci. Publ., Hackensack, NJ, 2007), 995–1009.Google Scholar
[35] , ‘Bernstein–Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements’, Compos. Math. 141(1) (2005), 121–145.Google Scholar | DOI
[36] and , ‘De Rham cohomology of logarithmic forms on arrangements of hyperplanes’, Trans. Amer. Math. Soc. 349(4) (1997), 1653–1662.Google Scholar | DOI
Cité par Sources :