Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_14,
author = {Brendon Rhoades and Andrew Timothy Wilson},
title = {The {Hilbert} series of the superspace coinvariant ring},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.14/}
}
TY - JOUR AU - Brendon Rhoades AU - Andrew Timothy Wilson TI - The Hilbert series of the superspace coinvariant ring JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.14/ DO - 10.1017/fmp.2024.14 LA - en ID - 10_1017_fmp_2024_14 ER -
Brendon Rhoades; Andrew Timothy Wilson. The Hilbert series of the superspace coinvariant ring. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.14
[1] , , and . ‘The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A’, Int. Math. Res. Not. IMRN 17 (2019), 5316–5388.Google Scholar | DOI
[2] , , , and . ‘Hessenberg varieties and hyperplane arrangements’, J. Reine Angew. Math. 764 (2020), 241–286.Google Scholar | DOI
[3] , , , and , ‘Superspace coinvariants and hyperplane arrangements’, Preprint, 2024, .Google Scholar | arXiv
[4] , Galois Theory (Notre Dame Math Lectures) no. 2, second edn. (Notre Dame, University of Notre Dame, 1944).Google Scholar
[5] , ‘Multivariate diagonal coinvariant spaces for complex reflection groups’, Adv. Math. 239 (2013), 97–108.Google Scholar | DOI
[6] , ‘-modules of multivariate diagonal harmonics’, Preprint, 2020, .Google Scholar | arXiv
[7] , ‘The bosonic-fermionic diagonal coinvariant modules conjecture’, Preprint, 2020, .Google Scholar | arXiv
[8] , ‘Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compass’, Ann. of Math. 57 (1953), 115–207.Google Scholar | DOI
[9] and , ‘Affine Schubert calculus and double coinvariants’, Preprint, 2018, .Google Scholar | arXiv
[10] , ‘Invariants of finite groups generated by reflections’, Amer. J. Math. 77(4) (1955), 778–782.Google Scholar | DOI
[11] , and . ‘Theta operators, refined Delta conjectures, and coinvariants’, Adv. Math. 376 (2021), 107477.Google Scholar
[12] and , ‘A remarkable q, t-Catalan sequence and q-Lagrange inversion’, J. Algebraic Combin. 5(3) (1996), 191–244.Google Scholar | DOI
[13] and , ‘Higher Specht bases for generalizations of the coinvariant ring’, Ann. Comb. 25(1) (2021), 51–77.Google Scholar | DOI
[14] , and , ‘The Delta Conjecture’, Trans. Amer. Math. Soc. 370 (2018), 4029–4057.Google Scholar | DOI
[15] , and , ‘Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture’, Adv. Math. 329 (2018), 851–915.Google Scholar | DOI
[16] , and , ‘Hall-Littlewood expansions of Schur delta operators at ’, Sém. Loth. Comb. 79 (2019), Article B79c.Google Scholar
[17] , ‘Conjectures on the quotient ring by diagonal invariants’, J. Algebraic Combin. 3 (1994), 17–76.Google Scholar | DOI
[18] , ‘Vanishing theorems and character formulas for the Hilbert scheme of points in the plane’, Invent. Math. 149(2) (2002), 371–407.Google Scholar | DOI
[19] , , , and , ‘A filtration on the cohomology rings of regular nilpotent Hessenberg varieties’, Math. Z. 298 (2021), 1345–1382.Google Scholar | DOI
[20] , and . ‘A proof of the fermionic Theta coinvariant conjecture’, Preprint, 2022, .Google Scholar | arXiv | DOI
[21] , ‘A combinatorial model for the fermionic diagonal coinvariant ring’, to appear, Combin. Theory 2022, .Google Scholar | arXiv | DOI
[22] and , ‘Lefschetz theory for exterior algebras and fermionic diagonal coinvariants’, Int. Math. Res. Not. IMRN 2022(4) (2022), 2906–2933.Google Scholar | DOI
[23] and , ‘Set partitions, fermions, and skein relations’, Int. Math. Res. Not. IMRN (2022), rnac110, https://doi.org/10.1093/imrn/rnac110.Google Scholar
[24] and , ‘Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials’, Illinois J. Math. 53(2) (2009), 591–603.Google Scholar | DOI
[25] , and , ‘Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups’, Algebr. Represent. Th. 14(4) (2007), 625–638.Google Scholar | DOI
[26] , ‘Descent representations for generalized coinvariant algebras’, Algebraic Combin. 3(4) (2020), 805–830.Google Scholar | DOI
[27] and , ‘A flag variety for the Delta Conjecture’, Trans. Amer. Math. Soc. 372(11) (2019), 8195–8248.Google Scholar | DOI
[28] and , An Introduction to Quantum Field Theory (Westview Press, 1995).Google Scholar
[29] and , ‘An extension of MacMahon’s Equidistribution Theorem to ordered set partitions’, J. Combin. Theory Ser. A 34 (2015), 242–277.Google Scholar | DOI
[30] and , ‘Vandermondes in superspace’, Trans. Amer. Math. Soc. 373(6) (2020), 4483–4516.Google Scholar | DOI
[31] and , ‘Set superpartitions and superspace duality modules’, Accepted, Forum Math. Sigma 2022, .Google Scholar | arXiv | DOI
[32] , and , ‘Harmonic bases for generalized coinvariant algebras’, Electron. J. Combin. 27(4) (2020), P4.16.Google Scholar | DOI
[33] and , ‘-Stirling numbers in type ’, Preprint, 2022, .Google Scholar | arXiv
[34] , ‘Invariants of finite reflection groups’, Nagoya Math. J. 22 (1963), 57–64.Google Scholar | DOI
[35] , ‘Tanisaki witness relations for harmonic differential forms’, Preprint, 2021, .Google Scholar | arXiv
[36] and , ‘Harmonic differential forms for pseudo-reflection groups I. Semi-invariants’, J. Combin. Theory Ser. A. 182 (2021), no. 105474.Google Scholar | DOI
[37] and , ‘Harmonic differential forms for pseudo-reflection groups II. Bi-degree bounds’, Preprint, 2021, .Google Scholar | arXiv | DOI
[38] , ‘Some implications of a conjecture of Zabrocki to the action of on polynomial differential forms’, Preprint, 2019, .Google Scholar | arXiv
[39] , ‘An extension of MacMahon’s Equidistribution Theorem to ordered multiset parititons’, Electron. J. Combin. 24(3) (2017), P3.21.Google Scholar
[40] , ‘A module for the Delta conjecture’, Preprint, 2019, .Google Scholar | arXiv
Cité par Sources :