Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_13,
author = {Nero Budur and Javier de la Bodega and Eduardo de Lorenzo Poza and Javier Fern\'andez de Bobadilla and Tomasz Pe{\l}ka},
title = {On the embedded {Nash} problem},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.13/}
}
TY - JOUR AU - Nero Budur AU - Javier de la Bodega AU - Eduardo de Lorenzo Poza AU - Javier Fernández de Bobadilla AU - Tomasz Pełka TI - On the embedded Nash problem JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.13/ DO - 10.1017/fmp.2024.13 LA - en ID - 10_1017_fmp_2024_13 ER -
%0 Journal Article %A Nero Budur %A Javier de la Bodega %A Eduardo de Lorenzo Poza %A Javier Fernández de Bobadilla %A Tomasz Pełka %T On the embedded Nash problem %J Forum of Mathematics, Pi %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.13/ %R 10.1017/fmp.2024.13 %G en %F 10_1017_fmp_2024_13
Nero Budur; Javier de la Bodega; Eduardo de Lorenzo Poza; Javier Fernández de Bobadilla; Tomasz Pełka. On the embedded Nash problem. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.13
[1] , ‘La fônction zeta d’une monodromie’, Comment. Math. Helv. 50 (1975), 233–248.Google Scholar
[2] , and , Compact Complex Surfaces (Springer-Verlag, Berlin, 1984).Google Scholar | DOI
[3] and , ‘Contribution of jumping numbers by exceptional divisors’, J. Algebra 496 (2018), 24–47. With an appendix by Smith and Tucker.Google Scholar | DOI
[4] , and (eds.), Arc Schemes and Singularities (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020).Google Scholar | DOI
[5] and , Plane Algebraic Curves (Birkhäuser Verlag, Basel, 1986).Google Scholar | DOI
[6] , and , ‘Arc spaces and the Rogers-Ramanujan identities’, Ramanujan J. 30 (2013), 9–38.Google Scholar | DOI
[7] , , and , ‘Cohomology of contact loci’, J. Differential Geom. 120 (2013), 389–409.Google Scholar
[8] and , ‘On contact loci of hyperplane arrangements’, Adv. Appl. Math. 132 (2022), 102271.Google Scholar | DOI
[9] , and , Motivic Integration (Birkhäuser, New York, 2018).Google Scholar | DOI
[10] and , ‘Jet schemes of quasi-ordinary surface singularities’, Nagoya Math. J. 242 (2021), 77–164.Google Scholar | DOI
[11] and , ‘Terminal valuations and the Nash problem’, Invent. Math. 203 (2016), 303–331.Google Scholar | DOI
[12] and , ‘Motivic Igusa zeta functions’, J. Algebraic Geom. 7 (1998), 505–537.Google Scholar
[13] and , ‘Motivic integration, quotient singularities and the McKay correspondence’, Compos. Math. 131 (2002), 267–290.Google Scholar | DOI
[14] , ‘Arcs on determinantal varieties’, Trans. Amer. Math. Soc. 365 (2013), 2241–2269.Google Scholar | DOI
[15] , and , ‘Contact loci in arc spaces’, Compos. Math. 140 (2004), 1229–1244.Google Scholar | DOI
[16] and , ‘Inversion of adjunction for local complete intersection varieties’, Amer. J. Math. 126 (2004), 1355–1365.Google Scholar | DOI
[17] and , ‘The Nash problem for surfaces’, Ann. Math. 176 (2012), 2003–2029.Google Scholar | DOI
[18] , and , ‘On the generalised Nash problem of smooth germs and adjacencies of curve singularities’, Adv. Math. 320 (2017), 1269–1317.Google Scholar | DOI
[19] , ‘Minimal model theory for log surfaces’, Publ. Res. Inst. Math. Sci. 48 (2012), 339–371.Google Scholar | DOI
[20] and , ‘Existence of log canonical closures’, Invent. Math. 192 (2013), 161–195.Google Scholar | DOI
[21] , ‘The arc space of a toric variety’, J. Algebra 278 (2004), 666–683.Google Scholar | DOI
[22] , ‘Maximal divisorial sets in arc spaces’, in Algebraic Geometry in East Asia-Hanoi 2005 (Adv. Stud. Pure Math.) vol. 50 (Math. Soc. Japan, Tokyo, 2008), 237–249.Google Scholar | DOI
[23] , , and , ‘The embedded Nash problem of birational models of rational triple singularities’, J. Singul. 22 (2020), 337–372.Google Scholar | DOI
[24] , and , ‘Introduction to the minimal model problems’, in Algebraic Geometry, Sendai, 1985 (Adv. Stud. Pure Math.) vol. 10 (North-Holland, Amsterdam, 1987), 283–360.Google Scholar | DOI
[25] , ‘Singularities of pairs’, in Algebraic Geometry-Santa Cruz 1995 (Proc. Sympos. Pure Math.) vol. 62, part 1 (Amer. Math. Soc., Providence, RI, 1997), 221–287.Google Scholar | DOI
[26] , Singularities of the Minimal Model Program (Cambridge Univ. Press, Cambridge, 2013). With a collaboration of Sándor Kovács.Google Scholar | DOI
[27] et al., ‘Flips and abundance for algebraic threefolds’, Astérisque 211 (1992).Google Scholar
[28] and , Birational Geometry of Algebraic Varieties (Cambridge Univ. Press, Cambridge, 1998).Google Scholar | DOI
[29] , ‘On the configuration of the singular fibers of jet schemes of rational double points’, Comm. Algebra 50 (2022), 1802–1820.Google Scholar | DOI
[30] , and , ‘Jet schemes and minimal embedded desingularization of plane branches’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), 145–157.Google Scholar | DOI
[31] , ‘Floer cohomology, multiplicity and the log canonical threshold’, Geom. Topol. 23 (2019), 957–1056.Google Scholar | DOI
[32] , ‘Jet schemes of complex plane branches and equisingularity’, Ann. Inst. Fourier (Grenoble) 61 (2012), 2313–2336.Google Scholar | DOI
[33] , ‘Jet schemes of rational double point singularities’, in Valuation Theory in Interaction (EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014), 373–388.Google Scholar | DOI
[34] , ‘Jet schemes of normal toric surfaces’, Bull. Soc. Math. France 145 (2017), 237–266.Google Scholar | DOI
[35] and , ‘Jet schemes and minimal toric embedded resolutions of rational double point singularities’, Comm. Algebra 46 (2018), 1314–1332.Google Scholar | DOI
[36] , ‘Jet schemes of locally complete intersection canonical singularities’, Invent. Math. 145 (2001), 397–424. With an appendix by and .Google Scholar | DOI
[37] , ‘Singularities of pairs via jet schemes’, J. Amer. Math. Soc. 15 (2002), 599–615.Google Scholar | DOI
[38] and , ‘Motivic Serre invariants of curves’, Manuscripta Math. 123 (2007), 105–132.Google Scholar | DOI
[39] and , ‘Motivic Serre invariants, ramification, and the analytic Milnor fiber’, Invent. Math. 168 (2007), 133–173.Google Scholar | DOI
[40] and , ‘Log-canonical models of singular pairs and its applications’, Math. Res. Lett. 19 (2012), 325–334.Google Scholar | DOI
[41] , ‘Almost minimal models of log surfaces’, Preprint, 2024, .Google Scholar | arXiv
[42] , ’Approximate roots’, in Valuation Theory and Its Applications, Vol. II (Saskatoon, SK, 1999) (Fields Inst. Commun.) vol. 33 (Amer. Math. Soc., Providence, RI, 2003), 285–321.Google Scholar
[43] , ‘The symplectic Floer homology of a Dehn twist’, Math. Res. Lett. 3 (1996), 829–834.Google Scholar | DOI
[44] , ‘Compactifications of subvarieties of tori’, Amer. J. Math. 129 (2007), 1087–1104.Google Scholar | DOI
Cité par Sources :