On the embedded Nash problem
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

The embedded Nash problem for a hypersurface in a smooth algebraic variety is to characterize geometrically the maximal irreducible families of arcs with fixed order of contact along the hypersurface. We show that divisors on minimal models of the pair contribute with such families. We solve the problem for unibranch plane curve germs, in terms of the resolution graph. These are embedded analogs of known results for the classical Nash problem on singular varieties.
@article{10_1017_fmp_2024_13,
     author = {Nero Budur and Javier de la Bodega and Eduardo de Lorenzo Poza and Javier Fern\'andez de Bobadilla and Tomasz Pe{\l}ka},
     title = {On the embedded {Nash} problem},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.13/}
}
TY  - JOUR
AU  - Nero Budur
AU  - Javier de la Bodega
AU  - Eduardo de Lorenzo Poza
AU  - Javier Fernández de Bobadilla
AU  - Tomasz Pełka
TI  - On the embedded Nash problem
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.13/
DO  - 10.1017/fmp.2024.13
LA  - en
ID  - 10_1017_fmp_2024_13
ER  - 
%0 Journal Article
%A Nero Budur
%A Javier de la Bodega
%A Eduardo de Lorenzo Poza
%A Javier Fernández de Bobadilla
%A Tomasz Pełka
%T On the embedded Nash problem
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.13/
%R 10.1017/fmp.2024.13
%G en
%F 10_1017_fmp_2024_13
Nero Budur; Javier de la Bodega; Eduardo de Lorenzo Poza; Javier Fernández de Bobadilla; Tomasz Pełka. On the embedded Nash problem. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.13

[1] A’Campo, N., ‘La fônction zeta d’une monodromie’, Comment. Math. Helv. 50 (1975), 233–248.Google Scholar

[2] Barth, W., Peters, C. and Van De Ven, A., Compact Complex Surfaces (Springer-Verlag, Berlin, 1984).Google Scholar | DOI

[3] Baumers, H. and Veys, W., ‘Contribution of jumping numbers by exceptional divisors’, J. Algebra 496 (2018), 24–47. With an appendix by Smith and Tucker.Google Scholar | DOI

[4] Bourqui, D., Nicaise, J. and Sebag, J. (eds.), Arc Schemes and Singularities (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020).Google Scholar | DOI

[5] Brieskorn, E. and Knörrer, H., Plane Algebraic Curves (Birkhäuser Verlag, Basel, 1986).Google Scholar | DOI

[6] Bruschek, C., Mourtada, H. and Schepers, J., ‘Arc spaces and the Rogers-Ramanujan identities’, Ramanujan J. 30 (2013), 9–38.Google Scholar | DOI

[7] Budur, N., Fernández De Bobadilla, J., Lê, Q. T. and Nguyen, H. D., ‘Cohomology of contact loci’, J. Differential Geom. 120 (2013), 389–409.Google Scholar

[8] Budur, N. and Tue, T. Q., ‘On contact loci of hyperplane arrangements’, Adv. Appl. Math. 132 (2022), 102271.Google Scholar | DOI

[9] Chambert-Loir, A., Nicaise, J. and Sebag, J., Motivic Integration (Birkhäuser, New York, 2018).Google Scholar | DOI

[10] Cobo, H. and Mourtada, H., ‘Jet schemes of quasi-ordinary surface singularities’, Nagoya Math. J. 242 (2021), 77–164.Google Scholar | DOI

[11] De Fernex, T. and Docampo, R., ‘Terminal valuations and the Nash problem’, Invent. Math. 203 (2016), 303–331.Google Scholar | DOI

[12] Denef, J. and Loeser, F., ‘Motivic Igusa zeta functions’, J. Algebraic Geom. 7 (1998), 505–537.Google Scholar

[13] Denef, J. and Loeser, F., ‘Motivic integration, quotient singularities and the McKay correspondence’, Compos. Math. 131 (2002), 267–290.Google Scholar | DOI

[14] Docampo, R., ‘Arcs on determinantal varieties’, Trans. Amer. Math. Soc. 365 (2013), 2241–2269.Google Scholar | DOI

[15] Ein, L., Lazarsfeld, R. and Mustaţă, M., ‘Contact loci in arc spaces’, Compos. Math. 140 (2004), 1229–1244.Google Scholar | DOI

[16] Ein, L. and Mustaţă, M., ‘Inversion of adjunction for local complete intersection varieties’, Amer. J. Math. 126 (2004), 1355–1365.Google Scholar | DOI

[17] Fernández De Bobadilla, J. and Pe Pereira, M., ‘The Nash problem for surfaces’, Ann. Math. 176 (2012), 2003–2029.Google Scholar | DOI

[18] Fernández De Bobadilla, J., Pe Pereiraa, M. and Popescu-Pampu, P., ‘On the generalised Nash problem of smooth germs and adjacencies of curve singularities’, Adv. Math. 320 (2017), 1269–1317.Google Scholar | DOI

[19] Fujino, O., ‘Minimal model theory for log surfaces’, Publ. Res. Inst. Math. Sci. 48 (2012), 339–371.Google Scholar | DOI

[20] Hacon, C. and Xu, C., ‘Existence of log canonical closures’, Invent. Math. 192 (2013), 161–195.Google Scholar | DOI

[21] Ishii, S., ‘The arc space of a toric variety’, J. Algebra 278 (2004), 666–683.Google Scholar | DOI

[22] Ishii, S., ‘Maximal divisorial sets in arc spaces’, in Algebraic Geometry in East Asia-Hanoi 2005 (Adv. Stud. Pure Math.) vol. 50 (Math. Soc. Japan, Tokyo, 2008), 237–249.Google Scholar | DOI

[23] Karadeniz, B., Mourtada, H., Plénat, C. and Tosun, M., ‘The embedded Nash problem of birational models of rational triple singularities’, J. Singul. 22 (2020), 337–372.Google Scholar | DOI

[24] Kawamata, Y., Matsuda, K. and Matsuki, K., ‘Introduction to the minimal model problems’, in Algebraic Geometry, Sendai, 1985 (Adv. Stud. Pure Math.) vol. 10 (North-Holland, Amsterdam, 1987), 283–360.Google Scholar | DOI

[25] Kollár, J., ‘Singularities of pairs’, in Algebraic Geometry-Santa Cruz 1995 (Proc. Sympos. Pure Math.) vol. 62, part 1 (Amer. Math. Soc., Providence, RI, 1997), 221–287.Google Scholar | DOI

[26] Kollár, J., Singularities of the Minimal Model Program (Cambridge Univ. Press, Cambridge, 2013). With a collaboration of Sándor Kovács.Google Scholar | DOI

[27] Kollár, J. et al., ‘Flips and abundance for algebraic threefolds’, Astérisque 211 (1992).Google Scholar

[28] Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties (Cambridge Univ. Press, Cambridge, 1998).Google Scholar | DOI

[29] Koreeda, Y., ‘On the configuration of the singular fibers of jet schemes of rational double points’, Comm. Algebra 50 (2022), 1802–1820.Google Scholar | DOI

[30] Lejeune-Jalabert, M., Mourtada, H. and Reguera, A., ‘Jet schemes and minimal embedded desingularization of plane branches’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), 145–157.Google Scholar | DOI

[31] Mclean, M., ‘Floer cohomology, multiplicity and the log canonical threshold’, Geom. Topol. 23 (2019), 957–1056.Google Scholar | DOI

[32] Mourtada, H., ‘Jet schemes of complex plane branches and equisingularity’, Ann. Inst. Fourier (Grenoble) 61 (2012), 2313–2336.Google Scholar | DOI

[33] Mourtada, H., ‘Jet schemes of rational double point singularities’, in Valuation Theory in Interaction (EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014), 373–388.Google Scholar | DOI

[34] Mourtada, H., ‘Jet schemes of normal toric surfaces’, Bull. Soc. Math. France 145 (2017), 237–266.Google Scholar | DOI

[35] Mourtada, H. and Plénat, C., ‘Jet schemes and minimal toric embedded resolutions of rational double point singularities’, Comm. Algebra 46 (2018), 1314–1332.Google Scholar | DOI

[36] Mustaţă, M., ‘Jet schemes of locally complete intersection canonical singularities’, Invent. Math. 145 (2001), 397–424. With an appendix by Eisenbud, D. and Frenkel, E..Google Scholar | DOI

[37] Mustaţă, M., ‘Singularities of pairs via jet schemes’, J. Amer. Math. Soc. 15 (2002), 599–615.Google Scholar | DOI

[38] Nicaise, J. and Sebag, J., ‘Motivic Serre invariants of curves’, Manuscripta Math. 123 (2007), 105–132.Google Scholar | DOI

[39] Nicaise, J. and Sebag, J., ‘Motivic Serre invariants, ramification, and the analytic Milnor fiber’, Invent. Math. 168 (2007), 133–173.Google Scholar | DOI

[40] Odaka, Y. and Xu, C., ‘Log-canonical models of singular pairs and its applications’, Math. Res. Lett. 19 (2012), 325–334.Google Scholar | DOI

[41] Palka, K., ‘Almost minimal models of log surfaces’, Preprint, 2024, .Google Scholar | arXiv

[42] Popescu-Pampu, P., ’Approximate roots’, in Valuation Theory and Its Applications, Vol. II (Saskatoon, SK, 1999) (Fields Inst. Commun.) vol. 33 (Amer. Math. Soc., Providence, RI, 2003), 285–321.Google Scholar

[43] Seidel, P., ‘The symplectic Floer homology of a Dehn twist’, Math. Res. Lett. 3 (1996), 829–834.Google Scholar | DOI

[44] Tevelev, J., ‘Compactifications of subvarieties of tori’, Amer. J. Math. 129 (2007), 1087–1104.Google Scholar | DOI

Cité par Sources :