Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

The optimal $L^4$-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus $\mathbb {T}^2$ is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger $L^4$ bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in $H^s(\mathbb {T}^2)$ for any $s>0$ and data that are small in the critical norm.
@article{10_1017_fmp_2024_11,
     author = {Sebastian Herr and Beomjong Kwak},
     title = {Strichartz estimates and global well-posedness of the cubic {NLS} on $\mathbb {T}^{2}$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.11/}
}
TY  - JOUR
AU  - Sebastian Herr
AU  - Beomjong Kwak
TI  - Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.11/
DO  - 10.1017/fmp.2024.11
LA  - en
ID  - 10_1017_fmp_2024_11
ER  - 
%0 Journal Article
%A Sebastian Herr
%A Beomjong Kwak
%T Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.11/
%R 10.1017/fmp.2024.11
%G en
%F 10_1017_fmp_2024_11
Sebastian Herr; Beomjong Kwak. Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.11

[1] Bourgain, J., ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations’, Geom. Funct. Anal. 3(2) (1993), 107–156. MR 1209299Google Scholar | DOI

[2] Bourgain, J. and Demeter, C., ‘The proof of the decoupling conjecture’, Ann. of Math. (2) 182(1) (2015), 351–389. MR 3374964Google Scholar | DOI

[3] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., ‘Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation’, Invent. Math. 181(1) (2010), 39–113. MR 2651381Google Scholar | DOI

[4] De Silva, D., Pavlović, N., Staffilani, G. and Tzirakis, N., ‘Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D’, Discrete Contin. Dyn. Syst. 19(1) (2007), 37–65. MR 2318273Google Scholar | DOI

[5] Fan, C., Staffilani, G., Wang, H. and Wilson, B., ‘On a bilinear Strichartz estimate on irrational tori’, Anal. PDE 11(4) (2018), 919–944. MR 3749372Google Scholar | DOI

[6] Guo, S., Li, Z. and Yung, P.-L., ‘Improved discrete restriction for the parabola’, Preprint, 2021, to appear in Math. Res. Lett.Google Scholar | arXiv

[7] Guth, L., Maldague, D. and Wang, H., ‘Improved decoupling for the parabola’, Preprint, 2020, , to appear in JEMS.Google Scholar | arXiv

[8] Hadac, M., Herr, S. and Koch, H., ‘Well-posedness and scattering for the KP-II equation in a critical space’, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26(3) (2009), 917–941. MR 2526409Google Scholar | DOI

[9] Hadac, M., Herr, S. and Koch, H., ‘Erratum to “Well-posedness and scattering for the KP-II equation in a critical space”’ [Ann. I. H. Poincaré—AN 26 (3) (2009) 917–941] [mr2526409], Ann. Inst. H. Poincaré C Anal. Non Linéaire 27(3) (2010), 971–972. MR 2629889Google Scholar

[10] Herr, S., Tataru, D. and Tzvetkov, N., ‘Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in ’, Duke Math. J. 159(2) (2011), 329–349. MR 2824485Google Scholar | DOI

[11] Kishimoto, N., ‘Remark on the periodic mass critical nonlinear Schrödinger equation’, Proc. Amer. Math. Soc. 142(8) (2014), 2649–2660. MR 3209321Google Scholar | DOI

[12] Koch, H., Tataru, D. and Vişan, M., Dispersive Equations and Nonlinear Waves (Oberwolfach Seminars) vol. 45 (Birkhäuser/Springer, Basel, 2014). MR 3618884Google Scholar | DOI

[13] Pach, J. and Sharir, M., ‘Repeated angles in the plane and related problems’, J. Combin. Theory Ser. A 59(1) (1992), 12–22. MR 1141318Google Scholar | DOI

[14] Schippa, R., ‘Improved global well-posedness for mass-critical nonlinear Schrödinger equations on tori’, Preprint, 2023, .Google Scholar | arXiv | DOI

[15] Takaoka, H. and Tzvetkov, N., ‘On 2D nonlinear Schrödinger equations with data on ’, J. Funct. Anal. 182(2) (2001), 427–442. MR 1828800Google Scholar | DOI

[16] Tao, T. and Vu, V. H., Additive Combinatorics (Cambridge Studies in Advanced Mathematics) vol. 105 (Cambridge University Press, Cambridge, 2010). MR 2573797Google Scholar

Cité par Sources :