Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_11,
author = {Sebastian Herr and Beomjong Kwak},
title = {Strichartz estimates and global well-posedness of the cubic {NLS} on $\mathbb {T}^{2}$},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.11/}
}
TY - JOUR
AU - Sebastian Herr
AU - Beomjong Kwak
TI - Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$
JO - Forum of Mathematics, Pi
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.11/
DO - 10.1017/fmp.2024.11
LA - en
ID - 10_1017_fmp_2024_11
ER -
%0 Journal Article
%A Sebastian Herr
%A Beomjong Kwak
%T Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.11/
%R 10.1017/fmp.2024.11
%G en
%F 10_1017_fmp_2024_11
Sebastian Herr; Beomjong Kwak. Strichartz estimates and global well-posedness of the cubic NLS on $\mathbb {T}^{2}$. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.11
[1] , ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations’, Geom. Funct. Anal. 3(2) (1993), 107–156. MR 1209299Google Scholar | DOI
[2] and , ‘The proof of the decoupling conjecture’, Ann. of Math. (2) 182(1) (2015), 351–389. MR 3374964Google Scholar | DOI
[3] , , , and , ‘Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation’, Invent. Math. 181(1) (2010), 39–113. MR 2651381Google Scholar | DOI
[4] , , and , ‘Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D’, Discrete Contin. Dyn. Syst. 19(1) (2007), 37–65. MR 2318273Google Scholar | DOI
[5] , , and , ‘On a bilinear Strichartz estimate on irrational tori’, Anal. PDE 11(4) (2018), 919–944. MR 3749372Google Scholar | DOI
[6] , and , ‘Improved discrete restriction for the parabola’, Preprint, 2021, to appear in Math. Res. Lett.Google Scholar | arXiv
[7] , and , ‘Improved decoupling for the parabola’, Preprint, 2020, , to appear in JEMS.Google Scholar | arXiv
[8] , and , ‘Well-posedness and scattering for the KP-II equation in a critical space’, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26(3) (2009), 917–941. MR 2526409Google Scholar | DOI
[9] , and , ‘Erratum to “Well-posedness and scattering for the KP-II equation in a critical space”’ [Ann. I. H. Poincaré—AN 26 (3) (2009) 917–941] [mr2526409], Ann. Inst. H. Poincaré C Anal. Non Linéaire 27(3) (2010), 971–972. MR 2629889Google Scholar
[10] , and , ‘Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in ’, Duke Math. J. 159(2) (2011), 329–349. MR 2824485Google Scholar | DOI
[11] , ‘Remark on the periodic mass critical nonlinear Schrödinger equation’, Proc. Amer. Math. Soc. 142(8) (2014), 2649–2660. MR 3209321Google Scholar | DOI
[12] , and , Dispersive Equations and Nonlinear Waves (Oberwolfach Seminars) vol. 45 (Birkhäuser/Springer, Basel, 2014). MR 3618884Google Scholar | DOI
[13] and , ‘Repeated angles in the plane and related problems’, J. Combin. Theory Ser. A 59(1) (1992), 12–22. MR 1141318Google Scholar | DOI
[14] , ‘Improved global well-posedness for mass-critical nonlinear Schrödinger equations on tori’, Preprint, 2023, .Google Scholar | arXiv | DOI
[15] and , ‘On 2D nonlinear Schrödinger equations with data on ’, J. Funct. Anal. 182(2) (2001), 427–442. MR 1828800Google Scholar | DOI
[16] and , Additive Combinatorics (Cambridge Studies in Advanced Mathematics) vol. 105 (Cambridge University Press, Cambridge, 2010). MR 2573797Google Scholar
Cité par Sources :