Local parameters of supercuspidal representations
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $. Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}^{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}^{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}^{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}^{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is ${\mathbb {P}}^1$ and a simple application of Deligne’s Weil II.
@article{10_1017_fmp_2024_10,
     author = {Wee Teck Gan and Michael Harris and Will Sawin and Rapha\"el Beuzart-Plessis},
     title = {Local parameters of supercuspidal representations},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.10/}
}
TY  - JOUR
AU  - Wee Teck Gan
AU  - Michael Harris
AU  - Will Sawin
AU  - Raphaël Beuzart-Plessis
TI  - Local parameters of supercuspidal representations
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.10/
DO  - 10.1017/fmp.2024.10
LA  - en
ID  - 10_1017_fmp_2024_10
ER  - 
%0 Journal Article
%A Wee Teck Gan
%A Michael Harris
%A Will Sawin
%A Raphaël Beuzart-Plessis
%T Local parameters of supercuspidal representations
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.10/
%R 10.1017/fmp.2024.10
%G en
%F 10_1017_fmp_2024_10
Wee Teck Gan; Michael Harris; Will Sawin; Raphaël Beuzart-Plessis. Local parameters of supercuspidal representations. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.10

[A84] Arthur, J., ‘On some problems suggested by the trace formula’, in Lie Group Representations, II (Lecture Notes in Math.) vol. 1041 (Springer, Berlin, 984), 1–49.Google Scholar

[A13] Arthur, J., The Endoscopic Classification of Representations–Orthogonal and Symplectic Groups (Colloquium Publications) vol. 61 (American Mathematical Society, 2013).Google Scholar

[AC] Arthur, J. and Clozel, L., Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula (Annals of Math. Studies) vol. 120 (Princeton University Press, Princeton, NJ, 1989).Google Scholar

[BDK] Bernstein, J., Deligne, P. and Kazhdan, D., ‘Trace Paley-Wiener theorem for reductive -adic groups’, J. Analyse Math. 47 (1986), 180–192.Google Scholar | DOI

[BFHKT] Böckle, G., Feng, T., Harris, M., Khare, C. and Thorne, J., ‘Cyclic base change of cuspidal automorphic representations over function fields’, manuscript (2022).Google Scholar

[BHKT] Böckle, G., Harris, M., Khare, C. and Thorne, J., ‘-local systems on smooth projective curvesare potentially automorphic’, Acta Math. 223 (2019), 1–111.Google Scholar | DOI

[BK] Bushnell, C. J. and Kutzko, P., The Admissible Dual of via Compact Open Subgroups (Annals of Mathematics Studies) vol. 129 (Princeton University Press, Princeton, NJ, 1993).Google Scholar

[BP] Beuzart-Plessis, R., ‘Elliptic orthonormality for discrete series’, manuscript (2022).Google Scholar

[CGP] Conrad, B., Gabber, O. and Prasa, G., Pseudo-Reductive Groups (NewMathematical Monographs) (2015).Google Scholar | DOI

[CH] Ciubotaru, D. and Harris, M., ‘On the generalized Ramanujan and Arthur conjectures over function fields’, Preprint, 2022, [math.NT].Google Scholar | arXiv

[CHLN] Clozel, L., Harris, M., Labesse, J.-P. and Ngô, B.C., The Stable Trace Formula, Shimura Varieties, and Arithmetic Applications, Book 1: On the Stabilization of the Trace Formula (International Press, Somerville, MA, 2011).Google Scholar

[DL] Dat, J.-F. and Lanard, T., ‘Depth zero representations over /, Preprint, 2022, [math.RT].Google Scholar | arXiv

[DR] Debacker, S. and Reeder, M., ‘Depth-zero supercuspidal -packets and their stability’, Ann. of Math. (2) 169(3) (2009), 795–901.Google Scholar | DOI

[De80] Deligne, P., ‘La conjecture de Weil. II’, Publ. Math. IHES 52 (1980), 137–252.Google Scholar | DOI

[DKV] Deligne, P., Kazhdan, D. and Vignéras, M.-F., ‘Représentations des algèbres centrales simples p–adiques’ in Representations of Reductive Groups over a Local Field, 3 (Travaux en Cours, Hermann, Paris, 1984), 3–117.Google Scholar

[Fi] Fintzen, J., ‘Types for tame -adic groups’, Ann. Math. 193 (2021), 303–346.Google Scholar | DOI

[FS] Fargues, L., and Scholze, P., ‘Geometrization of the local Langlands correspondence’, Astérisque, to appear.Google Scholar

[G] Ganapathy, R., ‘The local Langlands correspondence for over local function fields’, Amer. J. Math. 137 (2015), 1441–1534.Google Scholar | DOI

[GLa] Genestier, A. and Lafforgue, V., ‘Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale’, Preprint, 2017, [math.AG].Google Scholar | arXiv | DOI

[GLo] Gan, W.-T. and Lomelí, L., ‘Globalization of supercuspidal representations over function fields and applications’, J. Eur. Math. Soc. 20 (2018), 2813–2858.Google Scholar | DOI

[GR] Gross, B. H. and Reeder, M., ‘Arithmetic invariants of discrete Langlands parameters’, Duke Math. J. 154(3) (2010), 431–508.Google Scholar | DOI

[GV] Ganapathy, R. and Varma, S., ‘On the local Langlands correspondence for split classical groups over local function fields’, J. Math. Inst. Jussieu 16 (2017), 987–1074.Google Scholar | DOI

[HT01] Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties (Annals of Mathematics Studies) vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.Google Scholar

[H19] Harris, M., ‘Incorrigible representations’, Preprint, 2018, [math.NT].Google Scholar | arXiv

[HNY] Heinloth, J., Ngô, B.-C. and Yun, Z., ‘Kloosterman sheaves for reductive groups’, Ann. Math. 177 (2013), 241–310.Google Scholar | DOI

[He88] Henniart, G., ‘La conjecture de Langlands locale numérique pour GL(n)’, Ann. Sci. E.N.S. 21 (1988), 497–544.Google Scholar

[He00] Henniart, G., ‘Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique’, Invent. Math. 139 (2000), 439–455.Google Scholar | DOI

[HeLe] Henniart, G. and Lemaire, B., ‘Changement de base et induction automorphe pour en caractéristique non nulle’, Mém. Soc. Math. Fr. 124 (2011).Google Scholar

[HeLo] Henniart, G. and Lomelí, L., ‘Uniqueness of Rankin-Selberg factors’, J. Number Theory 133 (2013), 4024–4035.Google Scholar | DOI

[Lab99] Labesse, J.-P., ‘Cohomologie, stabilisation, et changement de base’, Astérisque 257 (1999).Google Scholar

[LL] Labesse, J.-P. and Lemaire, B., ‘La formule des traces tordue pour les corps de fonctions’, Preprint, 2021, https://arxiv.org/pdf/2102.02517v1.pdf.Google Scholar

[Laf02] Lafforgue, L., ‘Chtoucas de Drinfeld et correspondance de Langlands’, Invent. Math. 147 (2002), 1–241.Google Scholar | DOI

[Laf18] Lafforgue, V., ‘Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale’, J. Amer. Math. Soc. 31 (2018), 719–891.Google Scholar | DOI

[LRS93] Laumon, G., Rapoport, M. and Stuhler, U., ‘ -elliptic sheaves and the Langlands correspondence’, Invent. Math. 113 (1993), 217–338.Google Scholar | DOI

[LH23] Li Huerta, S. D., ‘Local-global compatibility over function fields’, Preprint, 2023, .Google Scholar | arXiv

[Lo19] Lomelí, L., ‘Rationality and holomorphy of Langlands-Shahidi -functions over function fields’, Math. Z. 291 (2019), 711–739.Google Scholar | DOI

[MW] Moeglin, C. and Waldspurger, J.-L., Stabilisation de la formule des traces tordue, Vol. 1, 2 (Progress in Mathematics) vol. 316–317 (Birkhäuser/Springer, Cham, 2016).Google Scholar

[PR] Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory (Pure and Applied Mathematics) vol. 139 (Academic Press, Inc., Boston, MA, 1994), xii+614 pp. Translated from the 1991 Russian original by Rachel Rowen.Google Scholar | DOI

[ST] Sawin, W. and Templier, N., ‘On the Ramanujan conjecture for automorphic forms over function fields, I. Geometry’, J. Amer. Math. Soc. 34 (2021), 653–746.Google Scholar | DOI

[Sch13] Scholze, P., ‘The local Langlands correspondence for over -adic fields’, Invent. Math. 192 (2013), 663–715.Google Scholar | DOI

[Si] Simpson, C., ‘Higgs bundles and local systems’, Publ. Math. IHES 75 (1992), 5–95.Google Scholar | DOI

[St] Stevens, S., ‘The supercuspidal representations of p-adic classical groups’, Invent. Math. 172 (2008), 289–352.Google Scholar | DOI

[TY] Taylor, R. and Yoshida, T., ‘Compatibility of local and global Langlands correspondencesJ. Amer. Math. Soc. 20 (2007), 467–493.Google Scholar | DOI

[XZ] Xu, D. and Zhu, X., ‘Bessel -isocrystals for reductive groups’, Invent. Math. 227 (2022), 997–1092.Google Scholar | DOI

[Y16] Yun, Z., ‘Epipelagic representations and rigid local systems’, Sel. Math. New Ser. 22 (2016), 1195–1243.Google Scholar | DOI

Cité par Sources :