Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2024_10,
author = {Wee Teck Gan and Michael Harris and Will Sawin and Rapha\"el Beuzart-Plessis},
title = {Local parameters of supercuspidal representations},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2024.10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.10/}
}
TY - JOUR AU - Wee Teck Gan AU - Michael Harris AU - Will Sawin AU - Raphaël Beuzart-Plessis TI - Local parameters of supercuspidal representations JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.10/ DO - 10.1017/fmp.2024.10 LA - en ID - 10_1017_fmp_2024_10 ER -
%0 Journal Article %A Wee Teck Gan %A Michael Harris %A Will Sawin %A Raphaël Beuzart-Plessis %T Local parameters of supercuspidal representations %J Forum of Mathematics, Pi %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.10/ %R 10.1017/fmp.2024.10 %G en %F 10_1017_fmp_2024_10
Wee Teck Gan; Michael Harris; Will Sawin; Raphaël Beuzart-Plessis. Local parameters of supercuspidal representations. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.10
[A84] , ‘On some problems suggested by the trace formula’, in Lie Group Representations, II (Lecture Notes in Math.) vol. 1041 (Springer, Berlin, 984), 1–49.Google Scholar
[A13] , The Endoscopic Classification of Representations–Orthogonal and Symplectic Groups (Colloquium Publications) vol. 61 (American Mathematical Society, 2013).Google Scholar
[AC] and , Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula (Annals of Math. Studies) vol. 120 (Princeton University Press, Princeton, NJ, 1989).Google Scholar
[BDK] , and , ‘Trace Paley-Wiener theorem for reductive -adic groups’, J. Analyse Math. 47 (1986), 180–192.Google Scholar | DOI
[BFHKT] , , , and , ‘Cyclic base change of cuspidal automorphic representations over function fields’, manuscript (2022).Google Scholar
[BHKT] , , and , ‘-local systems on smooth projective curvesare potentially automorphic’, Acta Math. 223 (2019), 1–111.Google Scholar | DOI
[BK] and , The Admissible Dual of via Compact Open Subgroups (Annals of Mathematics Studies) vol. 129 (Princeton University Press, Princeton, NJ, 1993).Google Scholar
[BP] , ‘Elliptic orthonormality for discrete series’, manuscript (2022).Google Scholar
[CGP] , and , Pseudo-Reductive Groups (NewMathematical Monographs) (2015).Google Scholar | DOI
[CH] and , ‘On the generalized Ramanujan and Arthur conjectures over function fields’, Preprint, 2022, [math.NT].Google Scholar | arXiv
[CHLN] , , and , The Stable Trace Formula, Shimura Varieties, and Arithmetic Applications, Book 1: On the Stabilization of the Trace Formula (International Press, Somerville, MA, 2011).Google Scholar
[DL] and , ‘Depth zero representations over /, Preprint, 2022, [math.RT].Google Scholar | arXiv
[DR] and , ‘Depth-zero supercuspidal -packets and their stability’, Ann. of Math. (2) 169(3) (2009), 795–901.Google Scholar | DOI
[De80] , ‘La conjecture de Weil. II’, Publ. Math. IHES 52 (1980), 137–252.Google Scholar | DOI
[DKV] , and , ‘Représentations des algèbres centrales simples p–adiques’ in Representations of Reductive Groups over a Local Field, 3 (Travaux en Cours, Hermann, Paris, 1984), 3–117.Google Scholar
[Fi] , ‘Types for tame -adic groups’, Ann. Math. 193 (2021), 303–346.Google Scholar | DOI
[FS] , and , ‘Geometrization of the local Langlands correspondence’, Astérisque, to appear.Google Scholar
[G] , ‘The local Langlands correspondence for over local function fields’, Amer. J. Math. 137 (2015), 1441–1534.Google Scholar | DOI
[GLa] and , ‘Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale’, Preprint, 2017, [math.AG].Google Scholar | arXiv | DOI
[GLo] and , ‘Globalization of supercuspidal representations over function fields and applications’, J. Eur. Math. Soc. 20 (2018), 2813–2858.Google Scholar | DOI
[GR] and , ‘Arithmetic invariants of discrete Langlands parameters’, Duke Math. J. 154(3) (2010), 431–508.Google Scholar | DOI
[GV] and , ‘On the local Langlands correspondence for split classical groups over local function fields’, J. Math. Inst. Jussieu 16 (2017), 987–1074.Google Scholar | DOI
[HT01] and , The Geometry and Cohomology of Some Simple Shimura Varieties (Annals of Mathematics Studies) vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.Google Scholar
[H19] , ‘Incorrigible representations’, Preprint, 2018, [math.NT].Google Scholar | arXiv
[HNY] , and , ‘Kloosterman sheaves for reductive groups’, Ann. Math. 177 (2013), 241–310.Google Scholar | DOI
[He88] , ‘La conjecture de Langlands locale numérique pour GL(n)’, Ann. Sci. E.N.S. 21 (1988), 497–544.Google Scholar
[He00] , ‘Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique’, Invent. Math. 139 (2000), 439–455.Google Scholar | DOI
[HeLe] and , ‘Changement de base et induction automorphe pour en caractéristique non nulle’, Mém. Soc. Math. Fr. 124 (2011).Google Scholar
[HeLo] and , ‘Uniqueness of Rankin-Selberg factors’, J. Number Theory 133 (2013), 4024–4035.Google Scholar | DOI
[Lab99] , ‘Cohomologie, stabilisation, et changement de base’, Astérisque 257 (1999).Google Scholar
[LL] and , ‘La formule des traces tordue pour les corps de fonctions’, Preprint, 2021, https://arxiv.org/pdf/2102.02517v1.pdf.Google Scholar
[Laf02] , ‘Chtoucas de Drinfeld et correspondance de Langlands’, Invent. Math. 147 (2002), 1–241.Google Scholar | DOI
[Laf18] , ‘Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale’, J. Amer. Math. Soc. 31 (2018), 719–891.Google Scholar | DOI
[LRS93] , and , ‘ -elliptic sheaves and the Langlands correspondence’, Invent. Math. 113 (1993), 217–338.Google Scholar | DOI
[LH23] , ‘Local-global compatibility over function fields’, Preprint, 2023, .Google Scholar | arXiv
[Lo19] , ‘Rationality and holomorphy of Langlands-Shahidi -functions over function fields’, Math. Z. 291 (2019), 711–739.Google Scholar | DOI
[MW] and , Stabilisation de la formule des traces tordue, Vol. 1, 2 (Progress in Mathematics) vol. 316–317 (Birkhäuser/Springer, Cham, 2016).Google Scholar
[PR] and , Algebraic Groups and Number Theory (Pure and Applied Mathematics) vol. 139 (Academic Press, Inc., Boston, MA, 1994), xii+614 pp. Translated from the 1991 Russian original by Rachel Rowen.Google Scholar | DOI
[ST] and , ‘On the Ramanujan conjecture for automorphic forms over function fields, I. Geometry’, J. Amer. Math. Soc. 34 (2021), 653–746.Google Scholar | DOI
[Sch13] , ‘The local Langlands correspondence for over -adic fields’, Invent. Math. 192 (2013), 663–715.Google Scholar | DOI
[Si] , ‘Higgs bundles and local systems’, Publ. Math. IHES 75 (1992), 5–95.Google Scholar | DOI
[St] , ‘The supercuspidal representations of p-adic classical groups’, Invent. Math. 172 (2008), 289–352.Google Scholar | DOI
[TY] and , ‘Compatibility of local and global Langlands correspondences’ J. Amer. Math. Soc. 20 (2007), 467–493.Google Scholar | DOI
[XZ] and , ‘Bessel -isocrystals for reductive groups’, Invent. Math. 227 (2022), 997–1092.Google Scholar | DOI
[Y16] , ‘Epipelagic representations and rigid local systems’, Sel. Math. New Ser. 22 (2016), 1195–1243.Google Scholar | DOI
Cité par Sources :