Logarithmic Donaldson–Thomas theory
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let X be a smooth and projective threefold with a simple normal crossings divisor D. We construct the Donaldson–Thomas theory of the pair $(X|D)$ enumerating ideal sheaves on X relative to D. These moduli spaces are compactified by studying subschemes in expansions of the target geometry, and the moduli space carries a virtual fundamental class leading to numerical invariants with expected properties. We formulate punctual evaluation, rationality and wall-crossing conjectures, in parallel with the standard theory. Our formalism specializes to the Li–Wu theory of relative ideal sheaves when the divisor is smooth and is parallel to recent work on logarithmic Gromov–Witten theory with expansions.
@article{10_1017_fmp_2024_1,
     author = {Davesh Maulik and Dhruv Ranganathan},
     title = {Logarithmic {Donaldson{\textendash}Thomas} theory},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2024.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.1/}
}
TY  - JOUR
AU  - Davesh Maulik
AU  - Dhruv Ranganathan
TI  - Logarithmic Donaldson–Thomas theory
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.1/
DO  - 10.1017/fmp.2024.1
LA  - en
ID  - 10_1017_fmp_2024_1
ER  - 
%0 Journal Article
%A Davesh Maulik
%A Dhruv Ranganathan
%T Logarithmic Donaldson–Thomas theory
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2024.1/
%R 10.1017/fmp.2024.1
%G en
%F 10_1017_fmp_2024_1
Davesh Maulik; Dhruv Ranganathan. Logarithmic Donaldson–Thomas theory. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2024.1

[1] Abramovich, D., Caporaso, L. and Payne, S., ‘The tropicalization of the moduli space of curves’, Ann. Sci. Éc. Norm. Supér. 48 (2015), 765–809.Google Scholar | DOI

[2] Abramovich, D. and Chen, Q., ‘Stable logarithmic maps to Deligne–Faltings pairs II’, Asian J. Math. 18 (2014), 465–488.Google Scholar | DOI

[3] Abramovich, D., Chen, Q., Gross, M. and Siebert, B., ‘Decomposition of degenerate Gromov–Witten invariants’, Compos. Math. 156 (2020), 2020–2075.Google Scholar | DOI

[4] Abramovich, D., Chen, Q., Gross, M. and Siebert, B., ‘Punctured logarithmic maps’, Preprint, 2020, Google Scholar | arXiv

[5] Abramovich, D., Chen, Q., Marcus, S., Ulirsch, M. and Wise, J., ‘Skeletons and fans of logarithmic structures’, in Nonarchimedean and Tropical Geometry, Baker, M. and Payne, S., eds., Simons Symposia, (Springer, 2016), 287–336.Google Scholar | DOI

[6] Abramovich, D., Chen, Q., Marcus, S. and Wise, J., ‘Boundedness of the space of stable logarithmic maps’, J. Eur. Math. Soc. 19 (2017), 2783–2809.Google Scholar | DOI

[7] Abramovich, D. and Karu, K., ‘Weak semistable reduction in characteristic 0’, Invent. Math. 139 (2000), 241–273.Google Scholar | DOI

[8] Abramovich, D. and Wang, J., ‘Equivariant resolution of singularities in characteristic ’, Math. Res. Lett. 4 (1997), 427–433.Google Scholar | DOI

[9] Abramovich, D. and Wise, J., ‘Birational invariance in logarithmic Gromov–Witten theory’, Comp. Math. 154 (2018), 595–620.Google Scholar | DOI

[10] Ascher, K. B. and Molcho, S., ‘Logarithmic stable toric varieties and their moduli’, Algebraic Geometry 3 (2016), 296–319.Google Scholar | DOI

[11] Battistella, L. and Nabijou, N., ‘Relative quasimaps and mirror formulae’, Int. Math. Res. Not. IMRN (2021), 7885–7931.Google Scholar | DOI

[12] Behrend, K. and Fantechi, B., ‘Symmetric obstruction theories and Hilbert schemes of points on threefolds’, Algebra & Number Theory 2 (2008), 313–345.Google Scholar | DOI

[13] Bertrand, B., Brugallé, E. and López De Medrano, L., ‘Planar tropical cubic curves of any genus, and higher dimensional generalisations’, Enseign. Math. 64 (2018), 415–457.Google Scholar | DOI

[14] Bieri, R. and Groves, J. R., ‘The geometry of the set of characters induced by valuations’, J. Reine Angew. Math. (Crelle’s Journal) 347 (1984), 168–195.Google Scholar

[15] Brandt, M. and Ulirsch, M., ‘Symmetric powers of algebraic and tropical curves: a non-Archimedean perspective’, Trans. Amer. Math. Soc. Ser. B 9 (2022), 586–618.Google Scholar | DOI

[16] Cavalieri, R., Chan, M., Ulirsch, M. and Wise, J., ‘A moduli stack of tropical curves’, Forum Math. Sigma 8 (2020), 1–93.Google Scholar | DOI

[17] Chen, Q., ‘Stable logarithmic maps to Deligne–Faltings pairs I’, Ann. of Math. 180 (2014), 341–392.Google Scholar | DOI

[18] Chen, Q. and Satriano, M., ‘Chow quotients of toric varieties as moduli of stable log maps’, Algebra and Number Theory Journal 7 (2013), 2313–2329.Google Scholar | DOI

[19] Costello, K., ‘Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products’, Ann. of Math. (2006), 561–601.Google Scholar

[20] Cox, D. A., Little, J. B. and Schenck, H. K., Toric Varieties, Graduate Studies in Mathematics, vol. 124 (American Mathematical Society, Providence, RI, 2011).Google Scholar | DOI

[21] Donaldson, S. K. and Thomas, R. P., ‘Gauge theory in higher dimensions’, in The Geometric Universe (Oxford, 1996) (Oxford Univ. Press, Oxford, 1998), 31–47.Google Scholar | DOI

[22] Douady, A. and Verdier, J.-L., ‘Séminaire de géometrie analytique de l’École normale supérieure 1974/1975’, Asterisque exposes VI–IX (1976).Google Scholar

[23] Ewald, G. and Ishida, M.-N., ‘Completion of real fans and Zariski-Riemann spaces’, Tohoku Math. J. 58 (2006), 189–218.Google Scholar | DOI

[24] Fulton, W., Introduction to Toric Varieties (Princeton University Press, Princeton, NJ, 1993).Google Scholar | DOI

[25] Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., ‘Triangulations and secondary polytopes’, in Discriminants, Resultants, and Multidimensional Determinants (Springer, 1994), 214–251.Google Scholar | DOI

[26] Gil, J. I. B. and Sombra, M., ‘When do the recession cones of a polyhedral complex form a fan?Discrete & Computational Geometry 46 (2011), 789–798.Google Scholar

[27] Gross, M. and Siebert, B., ‘Logarithmic Gromov–Witten invariants’, J. Amer. Math. Soc. 26 (2013), 451–510.Google Scholar | DOI

[28] Gubler, W., ‘A guide to tropicalizations’, in Algebraic and Combinatorial Aspects of Tropical Geometry, Contemp. Math., vol. 589 (Amer. Math. Soc., Providence, RI, 2013), 125–189.Google Scholar | DOI

[29] Hacking, P., Keel, S. and Tevelev, J., ‘Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces’, Invent. Math. 178 (2009), 173–227.Google Scholar | DOI

[30] Herr, L. and Wise, J., ‘Costello’s pushforward formula: errata and generalization’, manuscripta mathematica 171 (2023), 621–642.Google Scholar | DOI

[31] Huybrechts, D. and Lehn, M., The Geometry of Moduli Spaces of Sheaves (Cambridge University Press, 2010).Google Scholar | DOI

[32] Huybrechts, D. and Thomas, R. P., ‘Deformation-obstruction theory for complexes via Atiyah and Kodaira–Spencer classes’, Math. Ann. 346 (2010), 545–569.Google Scholar | DOI

[33] Ionel, E.-N. and Parker, T. H., ‘Relative Gromov–Witten invariants’, Ann. of Math. (2003), 45–96.Google Scholar | DOI

[34] Kapranov, M., Chow Quotients of Grassmannians I ,. IM Gelfand Seminar, vol. 16, 1993, 29–110.Google Scholar | DOI

[35] Kato, K., Logarithmic Dtructures of Fontaine–Illusie, Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), (1989), 191–224.Google Scholar

[36] Katz, E., ‘Tropical invariants from the secondary fan’, Adv. Geom. 9 (2009), 153–180.Google Scholar | DOI

[37] Katz, E. and Payne, S., ‘Realization spaces for tropical fans’, in Combinatorial Aspects of Commutative Algebra and Algebraic Geometry (Springer, 2011), 73–88.Google Scholar | DOI

[38] Keel, S. and Tevelev, J., ‘Geometry of Chow quotients of Grassmannians’, Duke Math. J. 134 (2006), 259–311.Google Scholar | DOI

[39] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., ‘Toroidal embeddings I’, Lecture Notes in Mathematics 339 (1973).Google Scholar | DOI

[40] Kennedy-Hunt, P., ‘Logarithmic Pandharipande–Thomas spaces and the secondary polytope’, Preprint, 2021, Google Scholar | arXiv

[41] Kennedy-Hunt, P., ‘The logarithmic quot space: foundations and tropicalisation’, Preprint, 2023, .Google Scholar | arXiv

[42] Levine, M. and Pandharipande, R., ‘Algebraic cobordism revisited’, Invent. Math. 176 (2009), 63–130.Google Scholar | DOI

[43] Li, A.-M. and Ruan, Y., ‘Symplectic surgery and Gromov–Witten invariants of Calabi-Yau 3-folds’, Invent. Math. 145 (2001), 151–218.Google Scholar | DOI

[44] Li, J., ‘Stable morphisms to singular schemes and relative stable morphisms’, J. Diff. Geom. 57 (2001), 509–578.Google Scholar

[45] Li, J., A degeneration formula of GW-invariants, J. Diff. Geom. 60 (2002), 199–293.Google Scholar

[46] Li, J., ‘Zero dimensional Donaldson–Thomas invariants of threefolds’, Geometry & Topology 10 (2006), 2117–2171.Google Scholar | DOI

[47] Li, J. and Wu, B., ‘’Good degeneration of Quot-schemes and coherent systems, Communications in Analysis and Geometry 23 (2015), 841–921.Google Scholar | DOI

[48] Maclagan, D. and Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161 (American Mathematical Society, Providence, RI, 2015).Google Scholar | DOI

[49] Manolache, C., ‘’Virtual pull-backs’, J. Algebr. Geom. 21 (2012), 201–245.Google Scholar

[50] Marcus, S. and Wise, J., ‘Logarithmic compactification of the Abel–Jacobi section’, Preprint, 2017, Google Scholar | arXiv

[51] Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., ‘Gromov–Witten theory and Donaldson–Thomas theory, I’, Compos. Math. 142 (2006), 1263–1285.Google Scholar | DOI

[52] Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., ‘Gromov–Witten theory and Donaldson–Thomas theory, II’, Compos. Math. 142 (2006), 1286–1304.Google Scholar | DOI

[53] Maulik, D., Oblomkov, A., Okounkov, A. and Pandharipande, R., ‘Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds’, Invent. Math. 186 (2011), 435–479.Google Scholar | DOI

[54] Maulik, D. and Okounkov, A., Quantum groups and quantum cohomology, Astérisque (2019), ix+209.Google Scholar

[55] Maulik, D., Pandharipande, R. and Thomas, R. P., ‘Curves on K3 surfaces and modular forms’, J. Topol. 3 (2010), 937–996.Google Scholar

[56] Maulik, D. and Ranganathan, D., ‘Logarithmic enumerative geometry for curves and sheaves’, Preprint, 2023, .Google Scholar | arXiv

[57] Mikhalkin, G., ‘Enumerative tropical geometry in ’, J. Amer. Math. Soc. 18 (2005), 313–377.Google Scholar | DOI

[58] Molcho, S., ‘Universal stacky semistable reduction’, Israel J. Math. 242 (2021), 55–82.Google Scholar | DOI

[59] Molcho, S. and Wise, J., ‘The logarithmic Picard group and its tropicalization’, Compos. Math. 158 (2022), 1477–1562.Google Scholar | DOI

[60] Mumford, D., ‘An analytic construction of degenerating abelian varieties over complete rings’, Compos. Math. 24 (1972), 239–272.Google Scholar

[61] Nishinou, T. and Siebert, B., ‘Toric degenerations of toric varieties and tropical curves’, Duke Math. J. 135 (2006), 1–51.Google Scholar | DOI

[62] Olsson, M. C., ‘Logarithmic geometry and algebraic stacks’, Ann. Sci. Éc. Norm. Supér. 36 (2003), 747–791.Google Scholar | DOI

[63] Pandharipande, R. and Pixton, A., ‘Gromov-Witten/pairs correspondence for the quintic 3-fold’, J. Amer. Math. Soc. 30 (2017), 389–449.Google Scholar | DOI

[64] Pandharipande, R. and Thomas, R. P., ‘Curve counting via stable pairs in the derived category’, Invent. Math. 178 (2009), 407–447.Google Scholar | DOI

[65] Pandharipande, R. and Thomas, R. P., ‘Stable pairs and BPS invariants’, J. Amer. Math. Soc. 23 (2010), 267–297.Google Scholar | DOI

[66] Payne, S., ‘Fibers of tropicalization’, Math. Z. 262 (2009), 301–311.Google Scholar | DOI

[67] Ranganathan, D., ‘Skeletons of stable maps I: Rational curves in toric varieties’, J. Lond. Math. Soc. 95 (2017), 804–832.Google Scholar | DOI

[68] Ranganathan, D., ‘Logarithmic Gromov–Witten theory with expansions’, Algebr. Geom. 9 (2022), 714–761.Google Scholar | DOI

[69] Ranganathan, D. and Wise, J., ‘Rational curves in the logarithmic multiplicative group’, Proc. Amer. Math. Soc. 148 (2020), 103–110.Google Scholar | DOI

[70] Raynaud, M. and Gruson, L., ‘Criteres de platitude et de projectivité: Techniques de platification d’un module’, Invent. Math. 13 (1971), 1–89.Google Scholar | DOI

[71] Tevelev, J., ‘Compactifications of subvarieties of tori’, Amer. J. Math. 129 (2007), 1087–1104.Google Scholar | DOI

[72] The Stacks Project Authors, stacks project. http://stacks.math.columbia.edu, 2019.Google Scholar

[73] Thomas, R. P., ‘A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K fibrations’, J. Differential Geom. 54 (2000), 367–438.Google Scholar | DOI

[74] Ulirsch, M., ‘Tropical compactification in log-regular varieties’, Math. Z. 280 (2015), 195–210.Google Scholar | DOI

[75] Ulirsch, M., ‘Functorial tropicalization of logarithmic schemes: the case of constant coefficients’, Proc. Lond. Math. Soc. 114 (2017), 1081–1113.Google Scholar | DOI

[76] Yu, T. Y., ‘The number of vertices of a tropical curve is bounded by its area’, L’Enseignement Mathématique 60 (2015), 257–271.Google Scholar | DOI

Cité par Sources :