Degrees of maps and multiscale geometry
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$, then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$. For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha n$.
@article{10_1017_fmp_2023_33,
     author = {Aleksandr Berdnikov and Larry Guth and Fedor Manin},
     title = {Degrees of maps and multiscale geometry},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2023.33},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.33/}
}
TY  - JOUR
AU  - Aleksandr Berdnikov
AU  - Larry Guth
AU  - Fedor Manin
TI  - Degrees of maps and multiscale geometry
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.33/
DO  - 10.1017/fmp.2023.33
LA  - en
ID  - 10_1017_fmp_2023_33
ER  - 
%0 Journal Article
%A Aleksandr Berdnikov
%A Larry Guth
%A Fedor Manin
%T Degrees of maps and multiscale geometry
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.33/
%R 10.1017/fmp.2023.33
%G en
%F 10_1017_fmp_2023_33
Aleksandr Berdnikov; Larry Guth; Fedor Manin. Degrees of maps and multiscale geometry. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2023.33

[1] Amann, M., ‘Degrees of self-maps of simply connected manifolds’, Int. Math. Res. Not. IMRN 2015(18) (2015), 8545–8589.Google Scholar | DOI

[2] Arkowitz, M. and Lupton, G., ‘Rational obstruction theory and rational homotopy sets’, Math. Z. 235(3) (2000), 525–539.Google Scholar | DOI

[3] Berdnikov, A. and Manin, F., ‘Scalable spaces’, Invent. Math. 229(3) (2022), 1055–1100.Google Scholar | DOI

[4] Body, R., Mimura, M., Shiga, H. and Sullivan, D., ‘-universal spaces and rational homotopy types’, Comment. Math. Helv. 73(3) (1998), 427–442.Google Scholar | DOI

[5] Borel, A., Linear Algebraic Groups (Graduate Texts in Mathematics) vol. 126, second edn, (Springer-Verlag, New York, 1991).Google Scholar | DOI

[6] Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology (Graduate Texts in Mathematics) vol. 82 (Springer-Verlag, New York, 1982).Google Scholar | DOI

[7] Buijs, U., Cantero Morán, F. and Cirici, J., ‘Weight decompositions of Thom spaces of vector bundles in rational homotopy’, J. Homotopy Relat. Struct. 15(1) (2020), 1–26.Google Scholar | DOI

[8] Costoya, C., Muñoz, V. and Viruel, A., ‘On strongly inflexible manifolds’, Int. Math. Res. Not. IMRN 2023(9) (2023), 7355–7390.Google Scholar | DOI

[9] Costoya, C. and Viruel, A., ‘Every finite group is the group of self-homotopy equivalences of an elliptic space’, Acta Math. 213(1) (2014), 49–62.Google Scholar | DOI

[10] Crowley, D. and Löh, C., ‘Functorial seminorms on singular homology and (in)flexible manifolds’, Algebr. Geom. Topol. 15(3) (2015), 1453–1499.Google Scholar | DOI

[11] Deligne, P., Griffiths, Ph., Morgan, J. and Sullivan, D., ‘Real homotopy theory of Kähler manifolds’, Invent. Math. 29(3) (1975), 245–274.Google Scholar | DOI

[12] Félix, Y., Halperin, S. and Thomas, J.-C., Rational Homotopy Theory (Graduate Texts in Mathematics) vol. 205 (Springer-Verlag, New York, 2001).Google Scholar | DOI

[13] Félix, Y., Oprea, J. and Tanré, D., Algebraic Models in Geometry (Oxford Graduate Texts in Mathematics) vol. 17 (Oxford University Press, Oxford, 2008).Google Scholar | DOI

[14] Griffiths, Ph. A. and Morgan, J. W., Rational Homotopy Theory and Differential Forms (Progress in Mathematics) vol. 16 (Birkhäuser, Boston, MA, 1981).Google Scholar

[15] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces (Progress in Mathematics) vol. 152 (Birkhäuser, Boston, MA, 1999). With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates.Google Scholar

[16] Halperin, S. and Stasheff, J., ‘Obstructions to homotopy equivalences’, Adv. Math. 32(3) (1979), 233–279.Google Scholar | DOI

[17] Liu, L., Yu, H. and Liu, Y., ‘Converting uniform homotopies into Lipschitz homotopies via moduli of continuity’, Topology Appl. 285(107377) (2020), 16 pp.Google Scholar | DOI

[18] Manin, F., ‘Plato’s cave and differential forms’, Geom. Topol. 23(6) (2019), 3141–3202.Google Scholar

[19] Manin, F., ‘Positive weights and self-maps’, Proc. Amer. Math. Soc. 150(10) (2022), 4557–4566.Google Scholar | DOI

[20] Marshall, M., Positive Polynomials and Sums of Squares (Mathematical Surveys and Monographs) vol. 146 (American Mathematical Society, Providence, RI, 2008).Google Scholar

[21] Papadima, Ş., ‘The rational homotopy of Thom spaces and the smoothing of homology classes’, Comment. Math. Helv. 60(4) (1985), 601–614.Google Scholar | DOI

[22] Shiga, H., ‘Rational homotopy type and self-maps’, J. Math. Soc. Japan 31(3) (1979), 427–434.Google Scholar | DOI

[23] Sullivan, D., ‘Infinitesimal computations in topology’, Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977).Google Scholar | DOI

[24] White, B., ‘Mappings that minimize area in their homotopy classes’, J. Differential Geom. 20(2) (1984), 433–446.Google Scholar | DOI

[25] Whitney, H., Geometric Integration Theory (Princeton University Press, Princeton, NJ, 1957).Google Scholar | DOI

Cité par Sources :