Smith theory and cyclic base change functoriality
Forum of Mathematics, Pi, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For $\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For $\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along $\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.
@article{10_1017_fmp_2023_32,
     author = {Tony Feng},
     title = {Smith theory and cyclic base change functoriality},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fmp.2023.32},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.32/}
}
TY  - JOUR
AU  - Tony Feng
TI  - Smith theory and cyclic base change functoriality
JO  - Forum of Mathematics, Pi
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.32/
DO  - 10.1017/fmp.2023.32
LA  - en
ID  - 10_1017_fmp_2023_32
ER  - 
%0 Journal Article
%A Tony Feng
%T Smith theory and cyclic base change functoriality
%J Forum of Mathematics, Pi
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.32/
%R 10.1017/fmp.2023.32
%G en
%F 10_1017_fmp_2023_32
Tony Feng. Smith theory and cyclic base change functoriality. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2023.32

[AC89] Arthur, J. and Clozel, L., Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula (Annals of Mathematics Studies) vol. 120 (Princeton University Press, Princeton, NJ, 1989).Google Scholar

[AL10] Adler, J.D. and Lansky, J. M., ‘Depth-zero base change for ramified ’, Trans. Amer. Math. Soc. 362(10) (2010), 5569–5599.Google Scholar | DOI

[Ber84] Bernstein, J. N., ‘Le “centre” de Bernstein’, in Representations of Reductive Groups over a Local Field (Travaux en Cours, Hermann, Paris, 1984,), 1–32. Edited by Deligne, P..Google Scholar

[BFH+] Böckle, G., Feng, T., Harris, M., Khare, C. and Thorne, J. A., ‘Cyclic base change for cuspidal automorphic representations over function fields’, To appear in Compositio Math.Google Scholar

[BG14] Buzzard, K. and Gee, T., ‘The conjectural connections between automorphic representations and Galois representations’, in Automorphic Forms and Galois Representations. Vol. 1 (London Math. Soc. Lecture Note Ser.,) vol. 414 (Cambridge Univ. Press, Cambridge, 2014), 135–187.Google Scholar | DOI

[BHKT19] Böckle, G., Harris, M., Khare, C. and Thorne, J. A., ‘ -local systems on smooth projective curves are potentially automorphic’, Acta Math. 223(1) (2019), 1–111.Google Scholar | DOI

[Bla94] Blasius, D., ‘On multiplicities for ’, Israel J. Math. 88(1–3) (1994), 237–251.Google Scholar | DOI

[Bor79] Borel, A., ‘Automorphic -functions’, in Automorphic Forms, Representations and -Functions(Proc. Sympos. Pure Math.) vol. 33, part 2 (Amer. Math. Soc., Providence, RI, 1979), 27–61. MR 546608Google Scholar

[BR18] Baumann, P. and Riche, S., ‘Notes on the geometric Satake equivalence’, in Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms (Lecture Notes in Math.) vol. 2221 (Springer, Cham, 2018), 1–134.Google Scholar

[BT72] Bruhat, F. and Tits, J., ‘Groupes réductifs sur un corps local’, Inst. Hautes Études Sci. Publ. Math. (41) (1972), 5–251.Google Scholar | DOI

[CGP15] Conrad, B., Gabber, O. and Prasad, G., Pseudo-Reductive Groups, second edn, (New Mathematical Monographs) vol. 26 (Cambridge University Press, Cambridge, 2015).Google Scholar | DOI

[CO] Chan, C. and Oi, M., ‘Geometric L-packets of Howe-unramified toral supercuspidal representations’, 2021, https://arxiv.org/pdf/2105.06341.pdf.Google Scholar

[DGNO10] Drinfeld, V., Gelaki, S., Nikshych, D. and Ostrik, V., ‘On braided fusion categories. I’, Selecta Math. (N.S.) 16(1) (2010), 1–119.Google Scholar | DOI

[DHKM] Dat, J.-F., Helm, D., Kurinczuk, R. and Moss, G., ‘Finiteness for Hecke algebras of p-adic groups’, to appear in J. Amer. Math. Sci. Google Scholar

[Don93] Donkin, S., ‘On tilting modules for algebraic groups’, Math. Z. 212(1) (1993), 39–60.Google Scholar | DOI

[Dri87] Drinfel’D, V. G., ‘Cohomology of compactified moduli varieties of -sheaves of rank , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) (Avtomorfn. Funkts. i Teor. Chisel. III) (1987), 107–158, 189.Google Scholar

[Fen] Feng, T., ‘Modular functoriality in the local Langlands correspondence’, Preprint, ArXiv .Google Scholar | arXiv

[Fen20] Feng, T., ‘Nearby cycles of parahoric shtukas, and a fundamental lemma for base change’, Selecta Math. (N.S.) 26(2) (2020) (Paper No. 21), 59.Google Scholar | DOI

[FS] Fargues, L. and Scholze, P., ‘Geometrization of the local Langlands correspondence,’ 2021, https://arxiv.org/pdf/2102.13459.pdf.Google Scholar

[GL] Genestier, A. and Lafforgue, V., ‘Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale’, Preprint, 2018, .Google Scholar | arXiv

[Hai09] Haines, T. J., ‘The base change fundamental lemma for central elements in parahoric Hecke algebras’, Duke Math. J. 149(3) (2009), 569–643.Google Scholar | DOI

[Hai12] Haines, T. J., ‘Base change for Bernstein centers of depth zero principal series blocks’, Ann. Sci. Éc. Norm. Supér. (4) 45(5) (2012), 681–718.Google Scholar | DOI

[Hai14] Haines, T. J., ‘The stable Bernstein center and test functions for Shimura varieties’, in Automorphic Forms and Galois Representations. Vol. 2 (London Math. Soc. Lecture Note Ser.) vol. 415 (Cambridge Univ. Press, Cambridge, 2014), 118–186.Google Scholar | DOI

[HL04] Harris, M. and Labesse, J.-P., ‘Conditional base change for unitary groups’, Asian J. Math. 8(4) (2004), 653–683.Google Scholar | DOI

[JMW14] Juteau, D., Mautner, C. and Williamson, G., ‘Parity sheaves’, J. Amer. Math. Soc. 27 (4) (2014), 1169–1212.Google Scholar | DOI

[JMW16] Juteau, D., Mautner, C., and Williamson, G., ‘Parity sheaves and tilting modules,’ Ann. Sci. Éc. Norm. Supér. (4) 49(2) (2016), 257–275.Google Scholar | DOI

[KP23] Kaletha, T. and Prasad, G., Bruhat-Tits Theory—A New Approach (New Mathematical Monographs) vol. 44 (Cambridge University Press, Cambridge, 2023). MR 4520154Google Scholar | DOI

[Lab99] Labesse, J.-P., ‘Cohomologie, stabilisation et changement de base’, Astérisque (257) (1999), vi+161. Appendix A by L. Clozel and J. P. Labesse, and Appendix B by L. Breen.Google Scholar

[Laf02] Lafforgue, L., ‘Chtoucas de Drinfeld et correspondance de Langlands’, Invent. Math. 147(1) (2002), 1–241.Google Scholar | DOI

[Laf18] Lafforgue, V., ‘Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale’, J. Amer. Math. Soc. 31(3) (2018), 719–891.Google Scholar | DOI

[Lan80] Langlands, R. P., Base Change for GL (Annals of Mathematics Studies) No. 96 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980).Google Scholar

[Lap99] Lapid, E. M., ‘Some results on multiplicities for ’, Israel J. Math. 112 (1999), 157–186.Google Scholar | DOI

[LL21] Leslie, S. and Lonergan, G., ‘Parity sheaves and Smith theory’, J. Reine Angew. Math. 777 (2021), 49–87. MR 4292864Google Scholar | DOI

[MP96] Moy, A. and Prasad, G., ‘Jacquet functors and unrefined minimal -types’, Comment. Math. Helv. 71(1) (1996), 98–121. MR 1371680Google Scholar | DOI

[MR18] Mautner, C. and Riche, S., ‘Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture’, J. Eur. Math. Soc. (JEMS) 20(9) (2018), 2259–2332.Google Scholar | DOI

[Pra20] Prasad, G., ‘Finite group actions on reductive groups and buildings and tamely-ramified descent in Bruhat-Tits theory’, Amer. J. Math. 142(4) (2020), 1239–1267.Google Scholar | DOI

[Qui71] Quillen, D., ‘The spectrum of an equivariant cohomology ring. I, II’, Ann. of Math. (2) 94 (1971), 549–572.Google Scholar | DOI

[Ric] Riche, S., ‘Geometric representation theory in positive characteristic’, Habilitation thesis, https://tel.archives-ouvertes.fr/tel-01431526/document.Google Scholar

[Ron16] Ronchetti, N., ‘Local base change via Tate cohomology’, Represent. Theory 20 (2016), 263–294.Google Scholar | DOI

[RW22] Riche, S. and Williamson, G., ‘Smith-Treumann theory and the linkage principle’, Publ. Math. Inst. Hautes Études Sci. 136 (2022), 225–292. MR 4517647Google Scholar | DOI

[RZ15] Richarz, T. and Zhu, X., ‘Appendix, the geometric Satake correspondence for ramified groups’, Ann. Sci. Éc. Norm. Supér. (4) 48(2) (2015), 409–451.Google Scholar

[Sai77] Saito, H., ‘Automorphic forms and algebraic extensions of number fields’, Sūgaku 29(1) (1977), 28–38.Google Scholar

[SGA4-3] ‘Théorie des topos et cohomologie étale des schémas. Tome 3’ (Lecture Notes in Mathematics,) vol. 305 (Springer-Verlag, Berlin-New York, 1973). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.Google Scholar

[SGA1] ‘Revêtales étales and fundamental group (SGA 1)’ (Mathematical Documents (Paris)) vol. 3 (Société Mathématique de France, Paris, 2003). Séminaire de géomé triealgé brick du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Reading Notes in Math., 224, Springer, Berlin; MR0354651 (50 # 7129)].Google Scholar

[Shi79] Shintani, T., ‘On liftings of holomorphic cusp forms’, in Automorphic Forms, Representations and -Functions (Proc. Sympos. Pure Math.) vol. 33, part 2 (Amer. Math. Soc., Providence, R.I., 1979), 97–110.Google Scholar | DOI

[ST21] Sawin, W. and Templier, N., ‘On the Ramanujan conjecture for automorphic forms over function fields I. Geometry’, J. Amer. Math. Soc. 34(3) (2021), 653–746.Google Scholar | DOI

[Sta20] The Stacks Project Authors, ‘Stacks Project’, https://stacks.math.columbia.edu, 2020.Google Scholar

[Tre19] Treumann, D., ‘Smith theory and geometric Hecke algebras’, Math. Ann. 375(1–2) (2019), 595–628.Google Scholar | DOI

[TV16] Treumann, D. and Venkatesh, A., ‘Functoriality, Smith theory, and the Brauer homomorphism’, Ann. of Math. (2) 183(1) (2016), 177–228.Google Scholar | DOI

[Var04] Varshavsky, Y., ‘Moduli spaces of principal -bundles’, Selecta Math. (N.S.) 10 (1) (2004), 131–166.Google Scholar | DOI

[Vig01] Vignéras, M.-F., ‘Correspondance de Langlands semi-simple pour modulo ,Invent. Math. 144(1) (2001), 177–223.Google Scholar | DOI

[Xuea] Xue, C., ‘Cohomology with integral coefficients of stacks of shtukas,’ 2023, https://arxiv.org/pdf/2001.05805.pdf.Google Scholar

[Xueb] Xue, C., ‘Smoothness of the cohomology of stacks of shtukas’, 2020, https://arxiv.org/pdf/2012.12833.pdf.Google Scholar

[Xue20] Xue, C., ‘Finiteness of cohomology groups of stacks of shtukas as modules over Hecke algebras, and applications’, Épijournal de Géométrie Algébrique 4(6) (2020), 1–42.Google Scholar | DOI

[XZ] Xiao, L. and Zhu, X., ‘Cycles on Shimura varieties via geometric Satake’, Preprint, 2017, .Google Scholar | arXiv

[Yu22] Yu, J., ‘The integral geometric Satake equivalence in mixed characteristic’, Represent. Theory 26 (2022), 874–905.Google Scholar | DOI

[Zhu] Zhu, X., ‘Coherent sheaves on the stack of Langlands parameters’, Preprint, 2021, .Google Scholar | arXiv

[Zhu17] Zhu, X., ‘An introduction to affine Grassmannians and the geometric Satake equivalence’, in Geometry of Moduli Spaces and Representation Theory (IAS/Park City Math. Ser.) vol. 24 (Amer. Math. Soc., Providence, RI, 2017), 59–154.Google Scholar | DOI

Cité par Sources :