Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2023_32,
author = {Tony Feng},
title = {Smith theory and cyclic base change functoriality},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2023.32},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.32/}
}
Tony Feng. Smith theory and cyclic base change functoriality. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2023.32
[AC89] and , Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula (Annals of Mathematics Studies) vol. 120 (Princeton University Press, Princeton, NJ, 1989).Google Scholar
[AL10] and , ‘Depth-zero base change for ramified ’, Trans. Amer. Math. Soc. 362(10) (2010), 5569–5599.Google Scholar | DOI
[Ber84] , ‘Le “centre” de Bernstein’, in Representations of Reductive Groups over a Local Field (Travaux en Cours, Hermann, Paris, 1984,), 1–32. Edited by .Google Scholar
[BFH+] , , , and , ‘Cyclic base change for cuspidal automorphic representations over function fields’, To appear in Compositio Math.Google Scholar
[BG14] and , ‘The conjectural connections between automorphic representations and Galois representations’, in Automorphic Forms and Galois Representations. Vol. 1 (London Math. Soc. Lecture Note Ser.,) vol. 414 (Cambridge Univ. Press, Cambridge, 2014), 135–187.Google Scholar | DOI
[BHKT19] , , and , ‘ -local systems on smooth projective curves are potentially automorphic’, Acta Math. 223(1) (2019), 1–111.Google Scholar | DOI
[Bla94] , ‘On multiplicities for ’, Israel J. Math. 88(1–3) (1994), 237–251.Google Scholar | DOI
[Bor79] , ‘Automorphic -functions’, in Automorphic Forms, Representations and -Functions(Proc. Sympos. Pure Math.) vol. 33, part 2 (Amer. Math. Soc., Providence, RI, 1979), 27–61. MR 546608Google Scholar
[BR18] and , ‘Notes on the geometric Satake equivalence’, in Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms (Lecture Notes in Math.) vol. 2221 (Springer, Cham, 2018), 1–134.Google Scholar
[BT72] and , ‘Groupes réductifs sur un corps local’, Inst. Hautes Études Sci. Publ. Math. (41) (1972), 5–251.Google Scholar | DOI
[CGP15] , and , Pseudo-Reductive Groups, second edn, (New Mathematical Monographs) vol. 26 (Cambridge University Press, Cambridge, 2015).Google Scholar | DOI
[CO] and , ‘Geometric L-packets of Howe-unramified toral supercuspidal representations’, 2021, https://arxiv.org/pdf/2105.06341.pdf.Google Scholar
[DGNO10] , , and , ‘On braided fusion categories. I’, Selecta Math. (N.S.) 16(1) (2010), 1–119.Google Scholar | DOI
[DHKM] , , and , ‘Finiteness for Hecke algebras of p-adic groups’, to appear in J. Amer. Math. Sci. Google Scholar
[Don93] , ‘On tilting modules for algebraic groups’, Math. Z. 212(1) (1993), 39–60.Google Scholar | DOI
[Dri87] , ‘Cohomology of compactified moduli varieties of -sheaves of rank , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) (Avtomorfn. Funkts. i Teor. Chisel. III) (1987), 107–158, 189.Google Scholar
[Fen] , ‘Modular functoriality in the local Langlands correspondence’, Preprint, ArXiv .Google Scholar | arXiv
[Fen20] , ‘Nearby cycles of parahoric shtukas, and a fundamental lemma for base change’, Selecta Math. (N.S.) 26(2) (2020) (Paper No. 21), 59.Google Scholar | DOI
[FS] and , ‘Geometrization of the local Langlands correspondence,’ 2021, https://arxiv.org/pdf/2102.13459.pdf.Google Scholar
[GL] and , ‘Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale’, Preprint, 2018, .Google Scholar | arXiv
[Hai09] , ‘The base change fundamental lemma for central elements in parahoric Hecke algebras’, Duke Math. J. 149(3) (2009), 569–643.Google Scholar | DOI
[Hai12] , ‘Base change for Bernstein centers of depth zero principal series blocks’, Ann. Sci. Éc. Norm. Supér. (4) 45(5) (2012), 681–718.Google Scholar | DOI
[Hai14] , ‘The stable Bernstein center and test functions for Shimura varieties’, in Automorphic Forms and Galois Representations. Vol. 2 (London Math. Soc. Lecture Note Ser.) vol. 415 (Cambridge Univ. Press, Cambridge, 2014), 118–186.Google Scholar | DOI
[HL04] and , ‘Conditional base change for unitary groups’, Asian J. Math. 8(4) (2004), 653–683.Google Scholar | DOI
[JMW14] , and , ‘Parity sheaves’, J. Amer. Math. Soc. 27 (4) (2014), 1169–1212.Google Scholar | DOI
[JMW16] , , and , ‘Parity sheaves and tilting modules,’ Ann. Sci. Éc. Norm. Supér. (4) 49(2) (2016), 257–275.Google Scholar | DOI
[KP23] and , Bruhat-Tits Theory—A New Approach (New Mathematical Monographs) vol. 44 (Cambridge University Press, Cambridge, 2023). MR 4520154Google Scholar | DOI
[Lab99] , ‘Cohomologie, stabilisation et changement de base’, Astérisque (257) (1999), vi+161. Appendix A by L. Clozel and J. P. Labesse, and Appendix B by L. Breen.Google Scholar
[Laf02] , ‘Chtoucas de Drinfeld et correspondance de Langlands’, Invent. Math. 147(1) (2002), 1–241.Google Scholar | DOI
[Laf18] , ‘Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale’, J. Amer. Math. Soc. 31(3) (2018), 719–891.Google Scholar | DOI
[Lan80] , Base Change for GL (Annals of Mathematics Studies) No. 96 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980).Google Scholar
[Lap99] , ‘Some results on multiplicities for ’, Israel J. Math. 112 (1999), 157–186.Google Scholar | DOI
[LL21] and , ‘Parity sheaves and Smith theory’, J. Reine Angew. Math. 777 (2021), 49–87. MR 4292864Google Scholar | DOI
[MP96] and , ‘Jacquet functors and unrefined minimal -types’, Comment. Math. Helv. 71(1) (1996), 98–121. MR 1371680Google Scholar | DOI
[MR18] and , ‘Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture’, J. Eur. Math. Soc. (JEMS) 20(9) (2018), 2259–2332.Google Scholar | DOI
[Pra20] , ‘Finite group actions on reductive groups and buildings and tamely-ramified descent in Bruhat-Tits theory’, Amer. J. Math. 142(4) (2020), 1239–1267.Google Scholar | DOI
[Qui71] , ‘The spectrum of an equivariant cohomology ring. I, II’, Ann. of Math. (2) 94 (1971), 549–572.Google Scholar | DOI
[Ric] , ‘Geometric representation theory in positive characteristic’, Habilitation thesis, https://tel.archives-ouvertes.fr/tel-01431526/document.Google Scholar
[Ron16] , ‘Local base change via Tate cohomology’, Represent. Theory 20 (2016), 263–294.Google Scholar | DOI
[RW22] and , ‘Smith-Treumann theory and the linkage principle’, Publ. Math. Inst. Hautes Études Sci. 136 (2022), 225–292. MR 4517647Google Scholar | DOI
[RZ15] and , ‘Appendix, the geometric Satake correspondence for ramified groups’, Ann. Sci. Éc. Norm. Supér. (4) 48(2) (2015), 409–451.Google Scholar
[Sai77] , ‘Automorphic forms and algebraic extensions of number fields’, Sūgaku 29(1) (1977), 28–38.Google Scholar
[SGA4-3] ‘Théorie des topos et cohomologie étale des schémas. Tome 3’ (Lecture Notes in Mathematics,) vol. 305 (Springer-Verlag, Berlin-New York, 1973). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.Google Scholar
[SGA1] ‘Revêtales étales and fundamental group (SGA 1)’ (Mathematical Documents (Paris)) vol. 3 (Société Mathématique de France, Paris, 2003). Séminaire de géomé triealgé brick du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Reading Notes in Math., 224, Springer, Berlin; MR0354651 (50 # 7129)].Google Scholar
[Shi79] , ‘On liftings of holomorphic cusp forms’, in Automorphic Forms, Representations and -Functions (Proc. Sympos. Pure Math.) vol. 33, part 2 (Amer. Math. Soc., Providence, R.I., 1979), 97–110.Google Scholar | DOI
[ST21] and , ‘On the Ramanujan conjecture for automorphic forms over function fields I. Geometry’, J. Amer. Math. Soc. 34(3) (2021), 653–746.Google Scholar | DOI
[Sta20] The Stacks Project Authors, ‘Stacks Project’, https://stacks.math.columbia.edu, 2020.Google Scholar
[Tre19] , ‘Smith theory and geometric Hecke algebras’, Math. Ann. 375(1–2) (2019), 595–628.Google Scholar | DOI
[TV16] and , ‘Functoriality, Smith theory, and the Brauer homomorphism’, Ann. of Math. (2) 183(1) (2016), 177–228.Google Scholar | DOI
[Var04] , ‘Moduli spaces of principal -bundles’, Selecta Math. (N.S.) 10 (1) (2004), 131–166.Google Scholar | DOI
[Vig01] , ‘Correspondance de Langlands semi-simple pour modulo ,’ Invent. Math. 144(1) (2001), 177–223.Google Scholar | DOI
[Xuea] , ‘Cohomology with integral coefficients of stacks of shtukas,’ 2023, https://arxiv.org/pdf/2001.05805.pdf.Google Scholar
[Xueb] , ‘Smoothness of the cohomology of stacks of shtukas’, 2020, https://arxiv.org/pdf/2012.12833.pdf.Google Scholar
[Xue20] , ‘Finiteness of cohomology groups of stacks of shtukas as modules over Hecke algebras, and applications’, Épijournal de Géométrie Algébrique 4(6) (2020), 1–42.Google Scholar | DOI
[XZ] and , ‘Cycles on Shimura varieties via geometric Satake’, Preprint, 2017, .Google Scholar | arXiv
[Yu22] , ‘The integral geometric Satake equivalence in mixed characteristic’, Represent. Theory 26 (2022), 874–905.Google Scholar | DOI
[Zhu] , ‘Coherent sheaves on the stack of Langlands parameters’, Preprint, 2021, .Google Scholar | arXiv
[Zhu17] , ‘An introduction to affine Grassmannians and the geometric Satake equivalence’, in Geometry of Moduli Spaces and Representation Theory (IAS/Park City Math. Ser.) vol. 24 (Amer. Math. Soc., Providence, RI, 2017), 59–154.Google Scholar | DOI
Cité par Sources :