Voir la notice de l'article provenant de la source Cambridge University Press
| $ \begin{align*}\mathbb{P}(\sigma_{\min}(A) \leqslant \varepsilon n^{-1/2} ) \leqslant C \varepsilon + e^{-cn},\end{align*} $ |
@article{10_1017_fmp_2023_29,
author = {Marcelo Campos and Matthew Jenssen and Marcus Michelen and Julian Sahasrabudhe},
title = {The least singular value of a random symmetric matrix},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fmp.2023.29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.29/}
}
TY - JOUR AU - Marcelo Campos AU - Matthew Jenssen AU - Marcus Michelen AU - Julian Sahasrabudhe TI - The least singular value of a random symmetric matrix JO - Forum of Mathematics, Pi PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.29/ DO - 10.1017/fmp.2023.29 LA - en ID - 10_1017_fmp_2023_29 ER -
%0 Journal Article %A Marcelo Campos %A Matthew Jenssen %A Marcus Michelen %A Julian Sahasrabudhe %T The least singular value of a random symmetric matrix %J Forum of Mathematics, Pi %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2023.29/ %R 10.1017/fmp.2023.29 %G en %F 10_1017_fmp_2023_29
Marcelo Campos; Matthew Jenssen; Marcus Michelen; Julian Sahasrabudhe. The least singular value of a random symmetric matrix. Forum of Mathematics, Pi, Tome 12 (2024). doi: 10.1017/fmp.2023.29
[1] , ‘A local limit theorem for cliques in G(n,p)’, Preprint, 2018, .Google Scholar | arXiv
[2] , , and , ‘Fixed energy universality for generalized Wigner matrices’, Comm. Pure Appl. Math. 69(10) (2016), 1815–1881.Google Scholar
[3] , , and , ‘Singularity of random symmetric matrices revisited’, Proc. of Amer. Math. Soc. 150(757) (2021), 3147–3159.Google Scholar
[4] , , and , ‘The singularity probability of a random symmetric matrix is exponentially small’, Preprint, 2021, .Google Scholar | arXiv
[5] , , and , ‘On the singularity of random symmetric matrices’, Duke Math. J. 170(5) (2021), 881–907.Google Scholar
[6] , ‘Bilinear and quadratic variants on the Littlewood-Offord problem’, Isr. J. Math. 194(1) (2013), 359–394.Google Scholar
[7] , and , ‘Random symmetric matrices are almost surely nonsingular’, Duke Math. J. 135(2) (2006), 395–413.Google Scholar
[8] , ‘Eigenvalues and condition numbers of random matrices’, SIAM J. Matrix Anal. Appl. 9(4) (1988), 543–560.Google Scholar
[9] , , , , and , ‘Bulk universality for Wigner Hermitian matrices with subexponential decay’, Math. Res. Lett. 17(4) (2010), 667–674.Google Scholar
[10] , and , ‘Local semicircle law and complete delocalization for Wigner random matrices’, Comm. Math. Phys. 287(2) (2009), 641–655.Google Scholar
[11] , and , ‘Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices’, Ann. Probab. 37(3) (2009), 815–852.Google Scholar | DOI
[12] , ‘Universality of Wigner random matrices: A survey of recent results’, Russ. Math. Surv. 66(3) (2011), 507.Google Scholar | DOI
[13] , and , ‘Wegner estimate and level repulsion for Wigner random matrices’, Int. Math. Res. Not. 2010(3) (2010), 436–479.Google Scholar | DOI
[14] , ‘On the Kolmogorov-Rogozin inequality for the concentration function’, Z. Wahrscheinlichkeitstheor. Verw. Geb. 5(3) (1966), 210–216.Google Scholar
[15] and , ‘A universality result for the smallest eigenvalues of certain sample covariance matrices’, Geom. Funct. Anal. 20(1) (2010), 88–123.Google Scholar
[16] and , ‘Singularity of random symmetric matrices—A combinatorial approach to improved bounds’, Forum Math. Sigma 7 (2019), Paper No. e22, 29.Google Scholar
[17] , , and , ‘On the counting problem in inverse Littlewood–Offord theory’, J. London Math. Soc. 103(4) (2021), 1333–1362.Google Scholar
[18] and , ‘A bound on tail probabilities for quadratic forms in independent random variables’, Ann. Math. Stat. 42(3) (1971), 1079–1083.Google Scholar | DOI
[19] , and , ‘On the smallest singular value of symmetric random matrices’, Comb. Probab. Comput. 31(4) (2022), 662–683.Google Scholar | DOI
[20] and , ‘An algebraic inverse theorem for the quadratic Littlewood-Offord problem, and an application to Ramsey graphs’, Discret. Anal. (2020), Paper No. 12, 34, .Google Scholar | arXiv
[21] , ‘The smallest singular value of heavy-tailed not necessarily i.i.d. random matrices via random rounding’, J. Anal. Math. 145 (2021), 257–306.Google Scholar | DOI
[22] , and , ‘The smallest singular value of inhomogeneous square random matrices’, Ann. Probab. 49(3) (2021), 1286–1309.Google Scholar
[23] , and , ‘Anti-concentration for polynomials of independent random variables’, Theory Comput. 12(11) (2016), 1–17.Google Scholar
[24] , and , ‘Random matrices: Tail bounds for gaps between eigenvalues’, Probab. Theory Relat. Fields 167(3) (2017), 777–816.Google Scholar
[25] , ‘Inverse Littlewood-Offord problems and the singularity of random symmetric matrices’, Duke Math. J. 161(4) (2012), 545–586.Google Scholar | DOI
[26] , ‘On the least singular value of random symmetric matrices’, Electron. J. Probab. 17(53) (2012), 19.Google Scholar
[27] , ‘Random matrices: Overcrowding estimates for the spectrum’, J. Funct. Anal. 275(8) (2018), 2197–2224.Google Scholar
[28] and , ‘Small probability, inverse theorems, and applications’, in Erdös centennial, Bolyai Society Mathematical Studies, vol. 25 (János Bolyai Mathematical Society, Budapest, 2013), 409–463.Google Scholar
[29] and , ‘Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries’, Isr. J. Math. 227(2) (2018), 507–544.Google Scholar
[30] , ‘Invertibility of random matrices: Norm of the inverse’, Ann. of Math. (2) 168(2) (2008), 575–600.Google Scholar
[31] and , ‘The Littlewood-Offord problem and invertibility of random matrices’, Adv. Math. 218(2) (2008), 600–633.Google Scholar | DOI
[32] and , ‘Smallest singular value of a random rectangular matrix’, Comm. Pure Appl. Math. 62(12) (2009), 1707–1739.Google Scholar
[33] and , ‘Hanson-Wright inequality and sub-Gaussian concentration’, Preprint, 2013, .Google Scholar | arXiv
[34] and , ‘Small ball probabilities for linear images of high-dimensional distributions’, Int. Math. Res. Not. 2015(19) (2015), 9594–9617.Google Scholar
[35] and , ‘No-gaps delocalization for general random matrices’, Geom. Funct. Anal. 26(6) (2016), 1716–1776.Google Scholar
[36] , ‘On the efficiency of algorithms of analysis’, Bull. Am. Math. Soc. 13(2) (1985), 87–121.Google Scholar
[37] and , ‘Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time’, in Proceedings of the Annual ACM Symposium on Theory of Computing (ACM, New York, 2001), 296–305.Google Scholar
[38] and , ‘Smoothed analysis of algorithms’, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) (Higher Education Press, Beijing, 2002), 597–606.Google Scholar
[39] , ‘Spaces with large distance to and random matrices’, Amer. J. Math. 112(6) (1990), 899–942.Google Scholar | DOI
[40] and , ‘Random matrices: A general approach for the least singular value problem’, Preprint, 2008, .Google Scholar | arXiv
[41] and , ‘Random matrices: The distribution of the smallest singular values’, Geom. Funct. Anal. 20(1) (2010), 260–297.Google Scholar
[42] and , ‘Random matrices: Universality of local eigenvalue statistics’, Acta Math. 206(1), (2011), 127–204.Google Scholar | DOI
[43] and , ‘Random matrices have simple spectrum’, Combinatorica 37(3) (2017) 539–553.Google Scholar
[44] and , ‘Inverse Littlewood-Offord theorems and the condition number of random discrete matrices’, Ann. of Math. (2) 169(2) (2009), 595–632.Google Scholar
[45] , ‘Singularity of random Bernoulli matrices’, Ann. of Math. 191(2) (2020), 593–634.Google Scholar
[46] , ‘Invertibility of symmetric random matrices’, Rand. Struct. Algorithms 44(2) (2014), 135–182.Google Scholar
[47] , High-Dimensional Probability: An Introduction With Applications in Data Science, vol. 47 (Cambridge University Press, Cambridge, 2018).Google Scholar
[48] , Design of Computers, Theory of Automata and Numerical Analysis, vol. 5 (Pergamon Press, London, 1963).Google Scholar
[49] and , ‘The condition number of a randomly perturbed matrix’, in Proceedings of the Annual ACM Symposium on Theory of Computing, STOC ’07 (Association for Computing Machinery, New York, NY, USA, 2007), 248–255.Google Scholar
[50] , ‘On the distribution of the roots of certain symmetric matrices’, Ann. of Math. (2) 67(2) (1958), 325–327.Google Scholar
[51] , ‘A bound on tail probabilities for quadratic forms in independent random variables whose distributions are not necessarily symmetric’, Ann. Probab. 1(6) (1973), 1068–1070.Google Scholar | DOI
Cité par Sources :